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A B S T R A C T   

Deep learning technologies based on Convolution Neural Networks (CNN) have been widely used in fabric defect 
detection. On-site CNN model training and defect detection offer several desirable properties for the fabric 
manufactures, such as better data security and less connectivity requirements, when compared with the on-cloud 
training approach. However, computers installed at the manufacturing site are usually industrial computers with 
limited computing power, which are not able to run many effective CNN models. A lightweight CNN model 
should be used in this scenario, in order to find a balance point among defect detection, efficiency, memory 
consumption and model training time. This paper presents a lightweight CNN-based architecture for fabric defect 
detection. Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art architectures, the 
proposed architecture, namely FN-Net, can perform training 3 to 33 times as fast as these architectures with less 
graphics processing unit and memory consumption. With adaptive class determination, FN-Net has an average F1 
score 0.86, while VGG16 and EfficientNet as the best and the worst among the baseline models have 0.81 and 
0.50, respectively.   

1. Introduction 

Automatic fabric defect detection is critical in textile production for 
the ability to distinguish defective and normal fabrics (Fig. 1) in the 
production quality control. It reduces the risk of revenue loss due to the 
sale of defective fabrics [1]. Traditionally, the defect detection process is 
performed by professional inspectors who examine the surface of the 
fabrics manually. This process can be time-consuming, prone to human 
error, and leads to results with low reliability and stability [2,3,4]. 
Consequently, the demands for automatic fabric defect detection 
through image and video processing technologies have been increasing. 
Numerous approaches, including structural, statistical, spectral, and 
model-based approaches, have been proposed for automatic fabric 
defect detection to improve fabric quality and reduce labor costs [1,5]. 

Rule-based Automated Optical Inspection (AOI) systems have been 
developed and installed in the fabric production line for automatic 

fabric defect detection. In this AOI system, several cameras were 
installed to capture image samples. The images are sent to the industrial 
computer for defect detection. However, several types of fabric condi
tions are misidentified by the AOI system. Those images are considered 
as hard-case images, since the easy ones have been classified by the AOI 
system. Consequently, the misclassified images must be manually 
examined by the human inspector to determine whether they represent 
fabric defects. In addition, the on-site installation is preferred to avoid 
privacy leakage issue if the training is performed on cloud [6]. To 
address these challenges, an advanced image processing approach, such 
as lightweight deep learning methods, must be developed. 

Deep learning is considered the best technique in many domains for 
identifying complex structures in high-dimensional data [7]. Among 
deep learning models, CNNs are the most suitable for image recognition, 
classification, and detection [8]. Fabric defect detection and classifica
tion have been conducted by fine-tuning existing CNN architectures, 
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constructing new CNN architectures, and combining two or more CNN 
architectures to enhance the results [2,9,10,11,12,13]. 

Due to their advantages, well-known deep CNN architectures are 
modified to achieve satisfactory image-based defect detection results in 
fabric manufacturing or other domains [2,4,12,13]. Various studies 
have implemented CNNbased architectures for fabric defect identifica
tion. Zhao et al. [2] constructed a model by combining visual percep
tron, visual long-term memory, and visual short-term memory to classify 
defective fabrics. They achieved an accuracy of 99.47% for the DHU-DF- 
500 dataset. Liu et al. [4] developed an effective weakly supervised 
shallow network to localize the defective area of fabric with F1 score of 
0.9346. Liu et al. [12] optimized VGG16 to identify defective fabrics 
from the Xiamen Face++ dataset, achieving an accuracy of 98.1%. Perez 
et al. [13] used pre-trained VGG16 with object localization for auto
mated detection of defects and deterioration of buildings with success 
rate of around 91%. Table 1 provides summary of the Deep CNN recent 
related studies. 

Nevertheless, deep CNNs have certain disadvantages, such as their 
large file sizes, numerous parameters, and high computational costs. 
Therefore, these networks are unsuitable to be run on devices with 
limited computing power [14,15,16,17]. Consequently, lightweight 
CNN architectures have been constructed to run image processing tasks, 
such as semantic segmentation and image classification, efficiently on 
mobile devices [18,19,20]. They successfully reduce the complexity and 
computational cost of the models with slight trade-off on the accuracies 
and error rates. Lightweight CNN architectures use relatively few pa
rameters, which enables them to be run faster. Moreover, the relatively 
small model size of these architectures enables them to be executed on 
hardware with limited computing power, such as mobile devices 
[20,14,16,17]. Several studies have constructed lightweight CNN ar
chitectures for image classification and segmentation in various do
mains. Yu et al. [14] developed Bi-MobileNet for remote sensing image 
classification. This network achieved an overall accuracy of 94.08% for 
the NWPU-RESISC45 dataset with a training data ratio of 20%, 7.76 
million parameters, and 29.59 MB model size. Jian et al. [16] con
structed a lightweight CNN model for fingerprint classification. This 
model achieved an accuracy of 93% with 816,261 parameters. Wang 
et al. [17] developed Light-AMC, which has 1.3 MB model size, for 
automatic modulation classification. Li et al. [20] optimized MobileNet 
to detect surface defects in chili filling production. They achieved an 
accuracy of 95.00% with a training time less than 1 day and a detection 
time of 0.12 s. Table 2 provides summary of the lightweight recent 
related studies. 

As an addition to the lightweight CNN’s accuracy compensation, 
imbalanced datasets can also negatively affect the performance of 
learning algorithms [22,23]. Various approaches have been proposed to 
overcome this, such as creating samples within clusters, oversampling 
the minority class, and using alternative metrics such as the F1 score, 
Area Under Curve (AUC) score, and G-mean [7,22,23,24,4]. Among 
these metrics, the F1 score is commonly used to assess models’ perfor
mance by using the numbers of True Positives (TPs), False Positives 
(FPs), and False Negatives (FNs). 

It is feasible to apply the state-of-the-art CNN architectures such as 
VGG16 [25], DenseNet [20], MobileNetV2 [18], and EfficientNet [19] 
for fabric defect detection. However, those architectures are usually too 
complex to be run and trained on an industrial computer with limited 
computing resources [12]. Therefore, this paper presents FN-Net, a 
simple lightweight CNN architecture for image-based fabric defect 
detection. This architecture has a low number of parameters, which 
leads to low computing resource demands. Furthermore, adaptive 
threshold-based class determination is implemented to reduce the error 
rate of the trained FN-Net for the defective images. This strategy allows 
the maximum False Negative Rate (FNR) to be set to a certain value 
while minimizing the False Positive Rate (FPR) by adjusting the 
threshold value in the class determination process. Compared with 
VGG16, DenseNet, MobileNetV2, and EfficientNet, FN-Net performs 
training 3 to 33 times as fast as these architectures with less graphics 
processing unit and memory consumption. With adaptive class deter
mination, FN-Net has an average F1 score 0.86, while VGG16 and Effi
cientNet as the best and the worst have 0.81 and 0.50, respectively. 

The remainder of this paper is organized as follows. Section 2 spec
ifies the datasets used in this study; Section 3 presents the proposed 
approach for fabric defect detection; Section 4 describes the experiments 
conducted in this study; and Section 5 exhibits the summary of the 
proposed method and the conclusions. 

2. Datasets 

Two sets of Greige fabrics images from a fabric company in Taiwan 
are used in this study. The images have gone through a rule-based AOI 
and misclassified as defective. Each fabric image was acquired by 
capturing an area of a fabric roll by using cameras set up under two 
lighting scenarios: reflected light and transmitted light. Three cameras 

Fig. 1. (a) Sample of a defective fabric and (b) sample of a normal fabric with 
worn-out threads. 

Table 1 
Summary of Deep CNN Recent Related Studies.   

Architecture 
name 

Dataset Methodology 

Zhao 
et al.  
[2] 

VLSTM DHU-FD-500, DHU- 
FD-1000 and Aliyun- 
FD-10500 fabric 
dataset 

Build visual long-short- 
term based deep learning 
for fabric defect detection. 

Liu et al. 
[4] 

DLSE-Net DAGM2007 and 
private fabric dataset 

Build a weakly supervised 
shallow network to localize 
the defective area of fabric. 

Liu et al. 
[12] 

LZFNet private fabric dataset Fine-tuned VGG16 for 
optimized fabric defect 
detection. 

Perez 
et al.  
[13] 

CNN-CAM private buildings 
dataset 

Fine-tuned VGG16 paired 
with object localization for 
buildings defect detection.  

Table 2 
Summary of Lightweight CNN Recent Related Studies.   

Architecture 
name 

Dataset Methodology 

Yu et al. 
[14] 

BiMobileNet UCMerced, AID, 
and NWPU- 
RESISC45 dataset 

MobileNetV2 paired with 
bilinear model for efficient and 
lightweight remote sensing 
image classification. 

Jian 
et al.  
[16] 

Jian et al.  
[16] 

NIST SD4 
fingerprint dataset 

A lightweight CNN structure 
based on singularity ROI for 
fingerprint recognition. 

Li et al. 
[21] 

MobileNet- 
SSD 

Private industrial 
chili filling image 
dataset 

Optimize MobileNet combined 
with Single Shot Multibox 
Detector (SSD) network for 
surface defect detection.  

A. Suryarasmi et al.                                                                                                                                                                                                                            



Displays 73 (2022) 102241

3

were installed for each lighting scenario. Cameras 1–3 were used for 
reflected light imaging, and cameras 4–6 were used for transmitted light 
imaging. The aforementioned six cameras were located inside glass 
boxes marked with red and yellow lines (Fig. 2). In the reflected light 
scenario, the light sources and cameras were located above the fabric 
roll, which allowed light to be projected approximately at the same 
angles as the cameras. In the transmitted light scenario, the cameras 
were located above the fabric roll, with the light sources were located 
under the fabric roll, which allowed light to be projected through the 
fabric. The distributions and samples of both datasets are presented in 
Tables 3 and 4. Both datasets contain different type of defect and normal 
classes. Additionally, both datasets suffer from imbalance condition in a 
different way. The majority samples of Dataset 1 belong to normal class, 
which make up to 99.75% of total samples, while in Dataset 2, the 

majority class is the defect class with 91.63% of total samples. 
The typical defect detection system requires one defect class and one 

normal class as the input. However, since each normal classes have 
distinctive features, and they came from AOI system’s false positive 
detection, they are easy to be recognized as defective. Merging them into 
one normal class would result in the loss of potentially useful informa
tion for classification. Therefore, a multiclass classification was per
formed by retaining multiple normal classes and one defect class. An 
additional procedure was required after multiclass classification to 
ensure that the final classification was a binary classification. 

All image samples are greyscale images with pixel values between 
0 and 255, and various sizes around 128 × 128 pixels (e.g., 130 × 130 
and 132 × 135 pixels). Before being input into the proposed network, 
the images were preprocessed by being cropped to 128 × 128 pixels and 
the values were normalized between 0 and 1. 

3. Proposed architecture and data processing workflow 

This paper proposes FN-Net, a CNN-based architecture for fabric 
defect detection. FN-Net has a low computational cost because it uses 
relatively few parameters; thus, this network has a short runtime and 

Fig. 2. Fabric images captured using two lighting scenarios: transmitted light and reflected light. Three cameras were used in each lighting scenario to capture 
fabric images. 

Table 3 
Image Classes and Samples in Dataset 1.  

Classes Number of images Image samples 

Defect 183 

Normal - Seam 1,685 

Normal - Dirt 32,621 

Normal - Fringe 1,221 

Normal - Fold 10,602 

Normal - Thread-off 3,187 

Normal - White-spot 23,159 

Total number of defect images 179  0.25% 
Total number of normal images 72,475  99.75% 
Total number of images 72,654   

Table 4 
Image Classes and Samples in Dataset 2.  

Classes Number of images Image samples 

Defect 11,502 

Normal - Uneven cloth 19 

Normal - Selvage 943 

Normal - Seam 88 

Total number of defect images 11,502  91.63% 
Total number of normal images 1,050  8.37% 
Total number of images 12,552   
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can be executed on hardware devices with relatively low computing 
power. However, FN-Net might have a low defect detection performance 
due to its lightweightness. Moreover, the presence of unbalanced data 
between normal and defect classes might further reduce the perfor
mance. To overcome these problems, an adaptive thresholdbased class 
determination is conducted on the probability values generated by FN- 
Net. By implementing these methods, a lightweight CNN-based archi
tecture can be constructed without compromising the detection 
accuracy. 

3.1. Architecture of FN-Net 

FN-Net receives 128 × 128-pixel grayscale images as inputs and 
produces multiclass outputs, which are then converted into binary 
outputs (defect and normal). Fig. 3 displays the architecture of FN-Net. It 
consists of four convolutional layers with 16, 32, 64, and 96 channels. 
Each convolutional layer has a 3 × 3 receptive field with zero padding, a 
stride of 1, and a Rectified Linear Unit (ReLU) activation function. The 
stride and padding values are selected to preserve the spatial size before 
max pooling is performed, and the ReLU activation is used to enable the 
network to learn faster [26]. Each convolutional layer in the proposed 
architecture is followed by a max pooling layer. The first two max 
pooling layers have windows of 3 × 3 with a stride of 3, and the final two 
layers have windows of 2 × 2 with a stride of 2. The windows and stride 
values are selected such that the spatial size of the last max pooling layer 
is 3 × 3. To visualize the ability of FN-Net’s convolution layers to locate 
the defective areas of fabrics, gradient-based localization [27] is per
formed for the activation layer following the final convolutional layer. 
The heat maps of the localization (Fig. 4) indicate the defective areas of a 
fabric. This information is used by the following layers to determine 
whether an image can be considered to represent a defective fabric. 

The stacks of convolutional and max pooling layers are followed by 
two fully connected layers (i.e., dense layers) and an output layer. The 
first fully connected layer derives the layers’ weights by flattening the 
nodes of the final max pooling layer with a dropout of 0.5. This value 
means that half the nodes are randomly selected and ignored during 
training to prevent overfitting. The first and second fully connected 
layers possess 512 and 256 channels, respectively. Finally, the output 
layer is responsible for performing classification. The number of 

Fig. 3. Architecture of FN-Net, which consists of four convolution layers, four max pooling layers, and three dense layers. The final dense layer acts as an 
output layer. 

Fig. 4. Heat maps of (a) Image number 1,000 and (b) Image number 11,000, which indicate the ability of FN-Net to detect the defective areas of fabrics.  

Table 5 
Number of Parameters Used by Different Architectures.  

Architecture Number of parameters 

VGG16 63,989,365 
MobileNetV2 2,401,351 
EfficientNet 4,058,538 
DenseNet 7,152,199 
FN-Net 623,975  

Table 6 
Model Sizes of the Compared Architectures.  

Architecture Model size (MB) 

VGG16 500 
MobileNetV2 28 
EfficientNet 48 
DenseNet 84 
FN-Net 7  
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channels in the output layer depends on the number of datasets’ image 
classes. With such configurations, FN-Net uses considerably fewer pa
rameters than other architectures as indicated in Table 5. 

The output layer of FN-Net uses a softmax activation function to 
provide the probabilities of each class (ranging from 0 to 1), with the 
sum of the probabilities of all classes being 1. The probability values are 
commonly used to determine the class of a given input. Because the 
dataset comprises multiple normal classes and only one defect class as 
the output, the probabilities of the normal classes are combined to get 
one probability for each defect and normal class. Furthermore, the 
imbalanced nature of the dataset allows the prediction accuracy to be 
high even if all the minority samples are misclassified. For example, if all 
the defect images in Dataset 1 are misclassified as normal images, the 
classification accuracy is still 99.75%. Therefore, an additional data 
processing must be conducted to interpret the CNN probability values 
for increasing the prediction quality without CNN retraining, and F1 
score should be used instead of accuracy to evaluate the proposed 

architecture. 

3.2. Class determination with adaptive threshold 

Typically, the threshold values are the averages of adjacent proba
bility values for a given set of input images. The number of thresholds 
and their values can vary between different prediction results. To avoid 
this situation, a set of threshold values ranging from 0 to 1 in increments 
of 0.0001 is used. The results of the comparisons between the threshold 
and defect probabilities are then used to calculate the numbers of TPs, 
True Negatives (TNs), FPs, and FNs. In this paper, defective images are 
labeled as positive and normal images are labeled as negative. 

Since both datasets suffer from imbalance problem, the proposed 
model tends to minimize either FPR or FNR even if the other is signifi
cantly higher so that a good prediction accuracy can be achieved. To 
prevent this situation, usually, Equal Error Rate (EER) point, where the 
FPR is equal or close to the FNR, can be used as a solution. However, 
using similar FPR and FNR values may not be the optimal approach, 
especially in the case of an extremely imbalanced dataset. As an alter
native, a maximum FNR can be defined according to company’s re
quirements, and the solution will be found by finding the minimum FPR 
value. However, if the maximum FNR value is not specified, the solution 
can be selected based on the best F1 score from various FNR values. The 
steps to perform the adaptive threshold approach is listed as follows:  

1. Set initial threshold values with 0 to 1 in increments of 0.0001.  
2. Compare validation’s data defect probabilities with each threshold 

value.  
3. Calculate F1 scores for each threshold value.  
4. Select threshold that returns the specified FNR value or highest F1 

score.  
5. Apply threshold to the testing data. 

4. Experiment results and discussion 

Two experiments for two different datasets were conducted to 
demonstrate the lightweightness and defect detection performance of 
FN-Net by comparing it with VGG16, DenseNet, MobileNetV2, and 
EfficientNet. These four baseline architectures were implemented using 
Keras modules in Python 3.7.7 and TensorFlow 2.3.1. We also demon
strated the ability of the adaptive threshold-based class determination to 

Table 7 
Runtime, GPU Utilization, and Memory Utilization of the Compared Architectures.   

Dataset 1 Dataset 2  

Training Testing Training Testing  

Runtime 
(min) 

GPU 
(%) 

Memory 
(MB) 

Runtime 
(min) 

GPU 
(%) 

Memory 
(MB) 

Runtime 
(min) 

GPU 
(%) 

Memory 
(MB) 

Runtime 
(min) 

GPU 
(%) 

Memory 
(MB) 

VGG16  30.2 94  59.1  1.18 90  74.42  3.9 94  35.93  0.22 90  42.96 
MobileNetV2  13.4 93  57.61  0.74 79  60.16  1.97 93  39.3  0.21 78  40.35 
EfficientNet  29.4 89  50.96  1.07 81  59.65  4.6 89  42.45  0.31 82  41.51 
DenseNet  43.6 87  57.68  1.28 75  58.71  4.06 87  36.5  0.36 86  40.81 
FN-Net  9.8 83  43.56  0.26 52  40.63  0.11 83  29.48  0.08 42  36.53  

Fig. 5. Validation results of FN-Net for Dataset 1 at various FNR values. The 
best F1 scores (red crosses) are the commonly used points in threshold selec
tion. However, any points in the graph are feasible solutions. 

Table 8 
Highest F1 scores Obtained for Various Architectures.   

Dataset 1 Dataset 2  

Highest F1 score Argmax Highest F1 score Argmax  

F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR 

VGG16 0.62 0.99  0.40 0.60 0.99 0.40 0.99 0.99 0 0.99 0.99 0 
MobileNetV2 0.05 0.04  0.01 0.00 0.99 1 0.98 0.95 0 0.97 0.96 0 
EfficientNet 0.04 0.40  0.38 0.00 0.99 1 0.97 0.95 0 0.97 0.96 0 
DenseNet 0.33 0.99  0.68 0.62 0.99 0.44 0.98 0.97 0 0.97 0.96 0.03 
FN-Net 0.72 0.99  0.36 0.60 0.99 0.33 0.99 0.99 0 0.99 0.99 0  
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tune the proposed model’s performance on the basis of different 
thresholds. 

In each experiment, the datasets were split into 90% and 10% for 
training and testing, respectively. It ensures the training data not to be 
included in the testing phase. Additionally, the validation sets were split 
from the training set and consisted of as much as 10% of the training 
data. Hyperparameters were selected on the basis of the validation data, 
and the presented results were obtained from the testing data. Each 
experiment was conducted 5 times and the average results were 
considered. 

This section is divided into two parts. Section 4.1 presents runtime 
and resource consumption results of FN-Net and the baseline CNN ar
chitectures. Section 4.2 presents the results of adaptive data processing 
and the thresholds selection according to the F1 scores. 

To compare the five considered architectures, their F1 scores, along 
with the corresponding accuracies and FNR were determined as shown 
in (1 to 3). By applying multiple threshold values to the prediction re
sults of validation data, various FNR values were obtained for the 
calculation of the F1 score. The highest F1 scores were then selected, and 
the corresponding thresholds were applied to the testing data to obtain 
the prediction results. 

F1 =
TP

TP + 0.5(FP + FN)
(1)  

Accuracy =
TP + TN

TP + TN + FP + FN
(2)  

FNR =
FN

TP + FN
(3)  

4.1. Lightweightness evaluation 

The computational cost experiment was conducted to prove that FN- 
Net can perform efficiently with a low computation cost, short execution 
time, and small model size. We recorded the Graphics Processing Unit 
(GPU) utilization, memory, and runtime in both the training and testing 
phases with Datasets 1 and 2 by using the wandb.ai module [28]. The 
computing host consisted of an Intel® Core™ i7-900 CPU, an NVIDIA 
GeForce RTX 2080 Ti GPU, and 64 GB of RAM. The operating system of 
this host was 64-bit Microsoft Windows 10 Enterprise. 

Table 6 presents the model sizes of the architectures. It shows that 
FN-Net is only 25% the size of MobileNetV2, which was the smallest 
baseline models. As for the computational cost, Table 7 indicates that 
DenseNet had the longest training time, while MobileNetV2 had the 
shortest training time among the baselines. The runtime of FN-Net was 
73% and 6% of MobileNetV2 for Datasets 1 and 2, respectively. In the 
testing phase, FN-Net consistently had the shortest runtime, with an 
average of 0.17 min for both datasets. This runtime was 37% the average 
runtime of the baseline models. 

The highest GPU utilization of the training and testing phase was 
obtained by VGG16 with average values of 94% and 90%, respectively; 
while the lowest GPU utilization of baseline architecture was obtained 
by DenseNet with 76.01% for training and MobileNetV2 with average 
value of 78.5%. Compared with the DenseNet, FN-Net had less 4% GPU 
utilization. As for the memory utilization, FN-Net had 78% of Effi
cientNet as the lowest among the baselines. The results confirmed that 
the proposed FN-Net was considerably smaller, faster, and required less 
computing power than the baseline models. 

4.2. Evaluation of class determination with adaptive threshold 

An experiment was conducted to demonstrate the suitability of 
adaptive threshold-based class determination. It allows the selection of 
certain FNR values and the determination of the corresponding 
threshold and mean F1 score for evaluating the selected solution. To 
illustrate the multiple solutions obtained by compared networks, Fig. 5 

displays the F1 scores for different FNR values when using validation 
data from Datasets 1. The highest F1 score for Dataset 1 (0.78) was 
obtained when the FNR was 0.18 and FPR was 0.00. The preferred so
lutions in this paper are presented by selecting the best F1 scores points 
(marked with x) within the graphs displayed in Fig. 5. Nevertheless, any 
points in the graph are feasible solutions that can be selected according 
to the company’s requirements as described in Section 3.2. 

To demonstrate the effectiveness of the adaptive threshold-based 
class de-termination, the approach was applied to all five architec
tures, and the results are presented in Table 8. Among the baseline 
models, the best F1 scores of Dataset 1 was obtained by VGG16 with 
0.62, while the worse was EfficientNet with 0.04. Even though the 
corresponding accuracies of the VGG16, DenseNet, and FN-Net reached 
0.99, with lower FNR of 0.36, FN-Net achieved better F1 score by 0.1 
compared to VGG16. When the adaptive approach was not applied, the 
accuracies of all the models reaches optimum value by 0.99. However, 
MobileNetV2 and EfficientNet return FNR value of 1, which implies that 
the whole defect samples were mispredicted as normal. As for the 
Dataset 2, both VGG16 and FN-Net had 0.99 F1 scores with corre
sponding accuracies of 0.99 and corresponding FNR of 0. The results 
confirmed that the proposed FN-Net was able to obtain better classifi
cation results while maintaining less computing resources than the 
baseline models. 

5. Conclusions 

This paper presents FN-Net, a lightweight CNN-based architecture 
for fabric defect detection. This architecture is currently the best solu
tion for overcoming the hardware limitations of on-site industrial 
computers in fabric manufacturing. Compared with VGG16, Mobile
NetV2, EfficientNet, and DenseNet, the proposed architecture enables 
image-based defect detection to be performed with a considerably lower 
computational cost and significantly higher speed. Moreover, the results 
of the proposed method are better compared to the aforementioned 
state-of-the-art lightweight architectures. We demonstrated that the 
adaptive-threshold-based class determination can dynamically adjust 
the prediction results of existing trained models without the need for 
retraining. 
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