Displays 73 (2022) 102241

Contents lists available at ScienceDirect

Displays

journal homepage: www.elsevier.com/locate/displa

ELSEVIER

Check for

FN-Net: A lightweight CNN-based architecture for fabric defect detection @&
with adaptive threshold-based class determination™

Anindita Suryarasmi®, Chin-Chun Chang™’, Rania Akhmalia®, Maysa Marshallia?,
Wei-Jen Wang “, Deron Liang*

& National Central University, No. 300, Zhongda Rd, Zhongli, Taiwan
Y National Taiwan Ocean University, No. 2, Beining Rd, Keelung, Taiwan

ARTICLE INFO ABSTRACT

Keywords:

Artificial intelligence

Lightweight convolutional neural network
Fabric manufacturing

AOI

Defect detection

Deep learning technologies based on Convolution Neural Networks (CNN) have been widely used in fabric defect
detection. On-site CNN model training and defect detection offer several desirable properties for the fabric
manufactures, such as better data security and less connectivity requirements, when compared with the on-cloud
training approach. However, computers installed at the manufacturing site are usually industrial computers with
limited computing power, which are not able to run many effective CNN models. A lightweight CNN model
should be used in this scenario, in order to find a balance point among defect detection, efficiency, memory
consumption and model training time. This paper presents a lightweight CNN-based architecture for fabric defect
detection. Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art architectures, the
proposed architecture, namely FN-Net, can perform training 3 to 33 times as fast as these architectures with less
graphics processing unit and memory consumption. With adaptive class determination, FN-Net has an average F1
score 0.86, while VGG16 and EfficientNet as the best and the worst among the baseline models have 0.81 and

0.50, respectively.

1. Introduction

Automatic fabric defect detection is critical in textile production for
the ability to distinguish defective and normal fabrics (Fig. 1) in the
production quality control. It reduces the risk of revenue loss due to the
sale of defective fabrics [1]. Traditionally, the defect detection process is
performed by professional inspectors who examine the surface of the
fabrics manually. This process can be time-consuming, prone to human
error, and leads to results with low reliability and stability [2,3,4].
Consequently, the demands for automatic fabric defect detection
through image and video processing technologies have been increasing.
Numerous approaches, including structural, statistical, spectral, and
model-based approaches, have been proposed for automatic fabric
defect detection to improve fabric quality and reduce labor costs [1,5].

Rule-based Automated Optical Inspection (AOI) systems have been
developed and installed in the fabric production line for automatic

fabric defect detection. In this AOI system, several cameras were
installed to capture image samples. The images are sent to the industrial
computer for defect detection. However, several types of fabric condi-
tions are misidentified by the AOI system. Those images are considered
as hard-case images, since the easy ones have been classified by the AOI
system. Consequently, the misclassified images must be manually
examined by the human inspector to determine whether they represent
fabric defects. In addition, the on-site installation is preferred to avoid
privacy leakage issue if the training is performed on cloud [6]. To
address these challenges, an advanced image processing approach, such
as lightweight deep learning methods, must be developed.

Deep learning is considered the best technique in many domains for
identifying complex structures in high-dimensional data [7]. Among
deep learning models, CNNs are the most suitable for image recognition,
classification, and detection [8]. Fabric defect detection and classifica-
tion have been conducted by fine-tuning existing CNN architectures,

Abbreviations: AOI, Automated Optical Inspection. 2; AUC, Area Under Curve. 5; CNN, Convolutional Neural Network. 1; EER, Equal Error Rate. 12; FN, False
Negative. 5; FNR, False Negative Rate. 6; FP, False Positive. 5; FPR, False Positive Rate. 6; GPU, Graphics Processing Unit. 13; ReLU, Rectified Linear Unit. 9; SSD,

Single Shot Multibox Detector. 5; TN, True Negative. 11; TP, True Positive. 5.
* % This paper was recommended for publication by Prof G Guangtao Zhai.
* Corresponding author.

https://doi.org/10.1016/j.displa.2022.102241

Received 29 November 2021; Received in revised form 13 April 2022; Accepted 20 May 2022

Available online 24 May 2022
0141-9382/© 2022 Elsevier B.V. All rights reserved.

www.sciencedirect.com/science/journal/01419382
https://www.elsevier.com/locate/displa
https://doi.org/10.1016/j.displa.2022.102241
https://doi.org/10.1016/j.displa.2022.102241
https://doi.org/10.1016/j.displa.2022.102241
http://crossmark.crossref.org/dialog/?doi=10.1016/j.displa.2022.102241&domain=pdf

A. Suryarasmi et al.

(a) (b)

Fig. 1. (a) Sample of a defective fabric and (b) sample of a normal fabric with
worn-out threads.

Table 1

Summary of Deep CNN Recent Related Studies.
Architecture Dataset Methodology
name

Zhao VLSTM DHU-FD-500, DHU- Build visual long-short-
et al. FD-1000 and Aliyun- term based deep learning
[2] FD-10500 fabric for fabric defect detection.

dataset

Liuetal. = DLSE-Net DAGM2007 and Build a weakly supervised
[4] private fabric dataset shallow network to localize

the defective area of fabric.

Liuetal. LZFNet private fabric dataset Fine-tuned VGG16 for
[12] optimized fabric defect

detection.

Perez CNN-CAM private buildings Fine-tuned VGG16 paired
et al. dataset with object localization for
[13] buildings defect detection.

Table 2

Summary of Lightweight CNN Recent Related Studies.
Architecture Dataset Methodology
name

Yuetal. BiMobileNet UCMerced, AID, MobileNetV2 paired with
[14] and NWPU- bilinear model for efficient and

RESISC45 dataset lightweight remote sensing
image classification.

Jian Jian et al. NIST SD4 A lightweight CNN structure
et al. [16] fingerprint dataset based on singularity ROI for

[16] fingerprint recognition.
Lietal. MobileNet- Private industrial Optimize MobileNet combined
[21] SSD chili filling image with Single Shot Multibox
dataset Detector (SSD) network for
surface defect detection.

constructing new CNN architectures, and combining two or more CNN
architectures to enhance the results [2,9,10,11,12,13].

Due to their advantages, well-known deep CNN architectures are
modified to achieve satisfactory image-based defect detection results in
fabric manufacturing or other domains [2,4,12,13]. Various studies
have implemented CNNbased architectures for fabric defect identifica-
tion. Zhao et al. [2] constructed a model by combining visual percep-
tron, visual long-term memory, and visual short-term memory to classify
defective fabrics. They achieved an accuracy of 99.47% for the DHU-DF-
500 dataset. Liu et al. [4] developed an effective weakly supervised
shallow network to localize the defective area of fabric with F1 score of
0.9346. Liu et al. [12] optimized VGG16 to identify defective fabrics
from the Xiamen Face++ dataset, achieving an accuracy of 98.1%. Perez
et al. [13] used pre-trained VGG16 with object localization for auto-
mated detection of defects and deterioration of buildings with success
rate of around 91%. Table 1 provides summary of the Deep CNN recent
related studies.

Displays 73 (2022) 102241

Nevertheless, deep CNNs have certain disadvantages, such as their
large file sizes, numerous parameters, and high computational costs.
Therefore, these networks are unsuitable to be run on devices with
limited computing power [14,15,16,17]. Consequently, lightweight
CNN architectures have been constructed to run image processing tasks,
such as semantic segmentation and image classification, efficiently on
mobile devices [18,19,20]. They successfully reduce the complexity and
computational cost of the models with slight trade-off on the accuracies
and error rates. Lightweight CNN architectures use relatively few pa-
rameters, which enables them to be run faster. Moreover, the relatively
small model size of these architectures enables them to be executed on
hardware with limited computing power, such as mobile devices
[20,14,16,17]. Several studies have constructed lightweight CNN ar-
chitectures for image classification and segmentation in various do-
mains. Yu et al. [14] developed Bi-MobileNet for remote sensing image
classification. This network achieved an overall accuracy of 94.08% for
the NWPU-RESISC45 dataset with a training data ratio of 20%, 7.76
million parameters, and 29.59 MB model size. Jian et al. [16] con-
structed a lightweight CNN model for fingerprint classification. This
model achieved an accuracy of 93% with 816,261 parameters. Wang
et al. [17] developed Light-AMC, which has 1.3 MB model size, for
automatic modulation classification. Li et al. [20] optimized MobileNet
to detect surface defects in chili filling production. They achieved an
accuracy of 95.00% with a training time less than 1 day and a detection
time of 0.12 s. Table 2 provides summary of the lightweight recent
related studies.

As an addition to the lightweight CNN’s accuracy compensation,
imbalanced datasets can also negatively affect the performance of
learning algorithms [22,23]. Various approaches have been proposed to
overcome this, such as creating samples within clusters, oversampling
the minority class, and using alternative metrics such as the F1 score,
Area Under Curve (AUC) score, and G-mean [7,22,23,24,4]. Among
these metrics, the F1 score is commonly used to assess models’ perfor-
mance by using the numbers of True Positives (TPs), False Positives
(FPs), and False Negatives (FNs).

It is feasible to apply the state-of-the-art CNN architectures such as
VGG16 [25], DenseNet [20], MobileNetV2 [18], and EfficientNet [19]
for fabric defect detection. However, those architectures are usually too
complex to be run and trained on an industrial computer with limited
computing resources [12]. Therefore, this paper presents FN-Net, a
simple lightweight CNN architecture for image-based fabric defect
detection. This architecture has a low number of parameters, which
leads to low computing resource demands. Furthermore, adaptive
threshold-based class determination is implemented to reduce the error
rate of the trained FN-Net for the defective images. This strategy allows
the maximum False Negative Rate (FNR) to be set to a certain value
while minimizing the False Positive Rate (FPR) by adjusting the
threshold value in the class determination process. Compared with
VGG16, DenseNet, MobileNetV2, and EfficientNet, FN-Net performs
training 3 to 33 times as fast as these architectures with less graphics
processing unit and memory consumption. With adaptive class deter-
mination, FN-Net has an average F1 score 0.86, while VGG16 and Effi-
cientNet as the best and the worst have 0.81 and 0.50, respectively.

The remainder of this paper is organized as follows. Section 2 spec-
ifies the datasets used in this study; Section 3 presents the proposed
approach for fabric defect detection; Section 4 describes the experiments
conducted in this study; and Section 5 exhibits the summary of the
proposed method and the conclusions.

2. Datasets

Two sets of Greige fabrics images from a fabric company in Taiwan
are used in this study. The images have gone through a rule-based AOI
and misclassified as defective. Each fabric image was acquired by
capturing an area of a fabric roll by using cameras set up under two
lighting scenarios: reflected light and transmitted light. Three cameras

A. Suryarasmi et al.

V'L

Displays 73 (2022) 102241

Transmit Light

Reflect Light

Fig. 2. Fabric images captured using two lighting scenarios: transmitted light and reflected light. Three cameras were used in each lighting scenario to capture

fabric images.

Table 3
Image Classes and Samples in Dataset 1.

Table 4
Image Classes and Samples in Dataset 2.

Classes Number of images Image samples Classes Number of images Image samples
Defect 183 Defect 11,502
Normal - Seam 1,685 Normal - Uneven cloth 19
Normal - Dirt 32,621 Normal - Selvage 943
Normal - Fringe 1,221 Normal - Seam 88 7]
R
Normal - Fold 10,602 Total number of defect images 11,502 91.63%
Total number of normal images 1,050 8.37%
Total number of images 12,552
Normal - Thread-off 3,187
majority class is the defect class with 91.63% of total samples.
Normal - White-spot 23,159 . . .
The typical defect detection system requires one defect class and one
L normal class as the input. However, since each normal classes have
Total number of defect images 179 0.25% distinctive features, and they came from AOI system’s false positive
Total number of normal images 72,475 99.75% detection, they are easy to be recognized as defective. Merging them into
Total number of images 72,654

were installed for each lighting scenario. Cameras 1-3 were used for
reflected light imaging, and cameras 4-6 were used for transmitted light
imaging. The aforementioned six cameras were located inside glass
boxes marked with red and yellow lines (Fig. 2). In the reflected light
scenario, the light sources and cameras were located above the fabric
roll, which allowed light to be projected approximately at the same
angles as the cameras. In the transmitted light scenario, the cameras
were located above the fabric roll, with the light sources were located
under the fabric roll, which allowed light to be projected through the
fabric. The distributions and samples of both datasets are presented in
Tables 3 and 4. Both datasets contain different type of defect and normal
classes. Additionally, both datasets suffer from imbalance condition in a
different way. The majority samples of Dataset 1 belong to normal class,
which make up to 99.75% of total samples, while in Dataset 2, the

one normal class would result in the loss of potentially useful informa-
tion for classification. Therefore, a multiclass classification was per-
formed by retaining multiple normal classes and one defect class. An
additional procedure was required after multiclass classification to
ensure that the final classification was a binary classification.

All image samples are greyscale images with pixel values between
0 and 255, and various sizes around 128 x 128 pixels (e.g., 130 x 130
and 132 x 135 pixels). Before being input into the proposed network,
the images were preprocessed by being cropped to 128 x 128 pixels and
the values were normalized between 0 and 1.

3. Proposed architecture and data processing workflow
This paper proposes FN-Net, a CNN-based architecture for fabric

defect detection. FN-Net has a low computational cost because it uses
relatively few parameters; thus, this network has a short runtime and

A. Suryarasmi et al.

CONV1

14x14x32

preprocessed 42x42x16 42x42x32

images

128x128 128x128x16

J;;u:

Displays 73 (2022) 102241

Dense512

Output

F Jr F—L =))
ez I ‘ , Ul Py >
= @ FF ®..0
I ' @

14x14x64 TX7x64 7X7x96 3x3x96 ‘ O
\,)

Dropout 0.5 Dense256

Fig. 3. Architecture of FN-Net, which consists of four convolution layers, four max pooling layers, and three dense layers. The final dense layer acts as an

output layer.

0

Fig. 4. Heat maps of (a) Image number 1,000 and (b) Image number 11,000, which indicate the ability of FN-Net to detect the defective areas of fabrics.

Table 5
Number of Parameters Used by Different Architectures.

Architecture Number of parameters
VGG16 63,989,365
MobileNetV2 2,401,351
EfficientNet 4,058,538

DenseNet 7,152,199

FN-Net 623,975

Table 6

Model Sizes of the Compared Architectures.

Architecture Model size (MB)
VGG16 500
MobileNetV2 28

EfficientNet 48

DenseNet 84

FN-Net 7

can be executed on hardware devices with relatively low computing
power. However, FN-Net might have a low defect detection performance
due to its lightweightness. Moreover, the presence of unbalanced data
between normal and defect classes might further reduce the perfor-
mance. To overcome these problems, an adaptive thresholdbased class
determination is conducted on the probability values generated by FN-
Net. By implementing these methods, a lightweight CNN-based archi-
tecture can be constructed without compromising the detection
accuracy.

3.1. Architecture of FN-Net

FN-Net receives 128 x 128-pixel grayscale images as inputs and
produces multiclass outputs, which are then converted into binary
outputs (defect and normal). Fig. 3 displays the architecture of FN-Net. It
consists of four convolutional layers with 16, 32, 64, and 96 channels.
Each convolutional layer has a 3 x 3 receptive field with zero padding, a
stride of 1, and a Rectified Linear Unit (ReLU) activation function. The
stride and padding values are selected to preserve the spatial size before
max pooling is performed, and the ReLU activation is used to enable the
network to learn faster [26]. Each convolutional layer in the proposed
architecture is followed by a max pooling layer. The first two max
pooling layers have windows of 3 x 3 with a stride of 3, and the final two
layers have windows of 2 x 2 with a stride of 2. The windows and stride
values are selected such that the spatial size of the last max pooling layer
is 3 x 3. To visualize the ability of FN-Net’s convolution layers to locate
the defective areas of fabrics, gradient-based localization [27] is per-
formed for the activation layer following the final convolutional layer.
The heat maps of the localization (Fig. 4) indicate the defective areas of a
fabric. This information is used by the following layers to determine
whether an image can be considered to represent a defective fabric.

The stacks of convolutional and max pooling layers are followed by
two fully connected layers (i.e., dense layers) and an output layer. The
first fully connected layer derives the layers’ weights by flattening the
nodes of the final max pooling layer with a dropout of 0.5. This value
means that half the nodes are randomly selected and ignored during
training to prevent overfitting. The first and second fully connected
layers possess 512 and 256 channels, respectively. Finally, the output
layer is responsible for performing classification. The number of

A. Suryarasmi et al.

Displays 73 (2022) 102241

Table 7
Runtime, GPU Utilization, and Memory Utilization of the Compared Architectures.
Dataset 1 Dataset 2
Training Testing Training Testing
Runtime GPU Memory Runtime GPU Memory Runtime GPU Memory Runtime GPU Memory
(min) (%) (MB) (min) (%) (MB) (min) (%) (MB) (min) (%) (MB)

VGG16 30.2 94 59.1 1.18 90 74.42 3.9 94 35.93 0.22 90 42.96

MobileNetv2 ~ 13.4 93 57.61 0.74 79 60.16 1.97 93 39.3 0.21 78 40.35

EfficientNet ~ 29.4 89 50.96 1.07 81 59.65 4.6 89 42.45 0.31 82 41.51

DenseNet 43.6 87 57.68 1.28 75 58.71 4.06 87 36.5 0.36 86 40.81

FN-Net 9.8 83 43.56 0.26 52 40.63 0.11 83 29.48 0.08 42 36.53

architecture.
Validation Result of Dataset 1
14 3.2. Class determination with adaptive threshold
\
\ Typically, the threshold values are the averages of adjacent proba-
08 \ X bility values for a given set of input images. The number of thresholds
‘\ and their values can vary between different prediction results. To avoid
2 06 \ this situation, a set of threshold values ranging from 0 to 1 in increments
5 \ of 0.0001 is used. The results of the comparisons between the threshold
a \ and defect probabilities are then used to calculate the numbers of TPs,
Y 04 \ True Negatives (TNs), FPs, and FNs. In this paper, defective images are
labeled as positive and normal images are labeled as negative.

\ F1-scores Since both datasets suffer from imbalance problem, the proposed
0.2 \ model tends to minimize either FPR or FNR even if the other is signifi-
— FPR cantly higher so that a good prediction accuracy can be achieved. To
J X' Highest F1-score prevent this situation, usually, Equal Error Rate (EER) point, where the
Q =~ FPR is equal or close to the FNR, can be used as a solution. However,
0 0.2 0.4 0.6 0.8 1 using similar FPR and FNR values may not be the optimal approach,

FNR

Fig. 5. Validation results of FN-Net for Dataset 1 at various FNR values. The
best F1 scores (red crosses) are the commonly used points in threshold selec-
tion. However, any points in the graph are feasible solutions.

channels in the output layer depends on the number of datasets’ image
classes. With such configurations, FN-Net uses considerably fewer pa-
rameters than other architectures as indicated in Table 5.

The output layer of FN-Net uses a softmax activation function to
provide the probabilities of each class (ranging from 0 to 1), with the
sum of the probabilities of all classes being 1. The probability values are
commonly used to determine the class of a given input. Because the
dataset comprises multiple normal classes and only one defect class as
the output, the probabilities of the normal classes are combined to get
one probability for each defect and normal class. Furthermore, the
imbalanced nature of the dataset allows the prediction accuracy to be
high even if all the minority samples are misclassified. For example, if all
the defect images in Dataset 1 are misclassified as normal images, the
classification accuracy is still 99.75%. Therefore, an additional data
processing must be conducted to interpret the CNN probability values
for increasing the prediction quality without CNN retraining, and F1
score should be used instead of accuracy to evaluate the proposed

especially in the case of an extremely imbalanced dataset. As an alter-
native, a maximum FNR can be defined according to company’s re-
quirements, and the solution will be found by finding the minimum FPR
value. However, if the maximum FNR value is not specified, the solution
can be selected based on the best F1 score from various FNR values. The
steps to perform the adaptive threshold approach is listed as follows:

1. Set initial threshold values with 0 to 1 in increments of 0.0001.

2. Compare validation’s data defect probabilities with each threshold
value.

3. Calculate F1 scores for each threshold value.

4. Select threshold that returns the specified FNR value or highest F1
score.

5. Apply threshold to the testing data.

4. Experiment results and discussion

Two experiments for two different datasets were conducted to
demonstrate the lightweightness and defect detection performance of
FN-Net by comparing it with VGG16, DenseNet, MobileNetV2, and
EfficientNet. These four baseline architectures were implemented using
Keras modules in Python 3.7.7 and TensorFlow 2.3.1. We also demon-
strated the ability of the adaptive threshold-based class determination to

Table 8
Highest F1 scores Obtained for Various Architectures.
Dataset 1 Dataset 2
Highest F1 score Argmax Highest F1 score Argmax
F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR F1 Scores Corr. Acc. Corr. FNR

VGG16 0.62 0.99 0.40 0.60 0.99 0.40 0.99 0.99 0 0.99 0.99 0
MobileNetV2 0.05 0.04 0.01 0.00 0.99 1 0.98 0.95 0 0.97 0.96 0
EfficientNet 0.04 0.40 0.38 0.00 0.99 1 0.97 0.95 0 0.97 0.96 0
DenseNet 0.33 0.99 0.68 0.62 0.99 0.44 0.98 0.97 0 0.97 0.96 0.03
FN-Net 0.72 0.99 0.36 0.60 0.99 0.33 0.99 0.99 0 0.99 0.99 0

A. Suryarasmi et al.

tune the proposed model’s performance on the basis of different
thresholds.

In each experiment, the datasets were split into 90% and 10% for
training and testing, respectively. It ensures the training data not to be
included in the testing phase. Additionally, the validation sets were split
from the training set and consisted of as much as 10% of the training
data. Hyperparameters were selected on the basis of the validation data,
and the presented results were obtained from the testing data. Each
experiment was conducted 5 times and the average results were
considered.

This section is divided into two parts. Section 4.1 presents runtime
and resource consumption results of FN-Net and the baseline CNN ar-
chitectures. Section 4.2 presents the results of adaptive data processing
and the thresholds selection according to the F1 scores.

To compare the five considered architectures, their F1 scores, along
with the corresponding accuracies and FNR were determined as shown
in (1 to 3). By applying multiple threshold values to the prediction re-
sults of validation data, various FNR values were obtained for the
calculation of the F1 score. The highest F1 scores were then selected, and
the corresponding thresholds were applied to the testing data to obtain
the prediction results.

7P
Fle—)]
TP + 0.5(FP 1 FN)
TP + TN
Accuracy — - 2
CUTaY = TP TN + FP+ FN @
FN

FNR = -~ 3
TP + FN 3

4.1. Lightweightness evaluation

The computational cost experiment was conducted to prove that FN-
Net can perform efficiently with a low computation cost, short execution
time, and small model size. We recorded the Graphics Processing Unit
(GPU) utilization, memory, and runtime in both the training and testing
phases with Datasets 1 and 2 by using the wandb.ai module [28]. The
computing host consisted of an Intel® Core™ i7-900 CPU, an NVIDIA
GeForce RTX 2080 Ti GPU, and 64 GB of RAM. The operating system of
this host was 64-bit Microsoft Windows 10 Enterprise.

Table 6 presents the model sizes of the architectures. It shows that
FN-Net is only 25% the size of MobileNetV2, which was the smallest
baseline models. As for the computational cost, Table 7 indicates that
DenseNet had the longest training time, while MobileNetV2 had the
shortest training time among the baselines. The runtime of FN-Net was
73% and 6% of MobileNetV2 for Datasets 1 and 2, respectively. In the
testing phase, FN-Net consistently had the shortest runtime, with an
average of 0.17 min for both datasets. This runtime was 37% the average
runtime of the baseline models.

The highest GPU utilization of the training and testing phase was
obtained by VGG16 with average values of 94% and 90%, respectively;
while the lowest GPU utilization of baseline architecture was obtained
by DenseNet with 76.01% for training and MobileNetV2 with average
value of 78.5%. Compared with the DenseNet, FN-Net had less 4% GPU
utilization. As for the memory utilization, FN-Net had 78% of Effi-
cientNet as the lowest among the baselines. The results confirmed that
the proposed FN-Net was considerably smaller, faster, and required less
computing power than the baseline models.

4.2. Evaluation of class determination with adaptive threshold

An experiment was conducted to demonstrate the suitability of
adaptive threshold-based class determination. It allows the selection of
certain FNR values and the determination of the corresponding
threshold and mean F1 score for evaluating the selected solution. To
illustrate the multiple solutions obtained by compared networks, Fig. 5

Displays 73 (2022) 102241

displays the F1 scores for different FNR values when using validation
data from Datasets 1. The highest F1 score for Dataset 1 (0.78) was
obtained when the FNR was 0.18 and FPR was 0.00. The preferred so-
lutions in this paper are presented by selecting the best F1 scores points
(marked with x) within the graphs displayed in Fig. 5. Nevertheless, any
points in the graph are feasible solutions that can be selected according
to the company’s requirements as described in Section 3.2.

To demonstrate the effectiveness of the adaptive threshold-based
class de-termination, the approach was applied to all five architec-
tures, and the results are presented in Table 8. Among the baseline
models, the best F1 scores of Dataset 1 was obtained by VGG16 with
0.62, while the worse was EfficientNet with 0.04. Even though the
corresponding accuracies of the VGG16, DenseNet, and FN-Net reached
0.99, with lower FNR of 0.36, FN-Net achieved better F1 score by 0.1
compared to VGG16. When the adaptive approach was not applied, the
accuracies of all the models reaches optimum value by 0.99. However,
MobileNetV2 and EfficientNet return FNR value of 1, which implies that
the whole defect samples were mispredicted as normal. As for the
Dataset 2, both VGG16 and FN-Net had 0.99 F1 scores with corre-
sponding accuracies of 0.99 and corresponding FNR of 0. The results
confirmed that the proposed FN-Net was able to obtain better classifi-
cation results while maintaining less computing resources than the
baseline models.

5. Conclusions

This paper presents FN-Net, a lightweight CNN-based architecture
for fabric defect detection. This architecture is currently the best solu-
tion for overcoming the hardware limitations of on-site industrial
computers in fabric manufacturing. Compared with VGG16, Mobile-
NetV2, EfficientNet, and DenseNet, the proposed architecture enables
image-based defect detection to be performed with a considerably lower
computational cost and significantly higher speed. Moreover, the results
of the proposed method are better compared to the aforementioned
state-of-the-art lightweight architectures. We demonstrated that the
adaptive-threshold-based class determination can dynamically adjust
the prediction results of existing trained models without the need for
retraining.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This study is conducted under the “Research & Development Project
for IntelliGEMt Cloud Service Platform for Machinery Industry” of the
Institute for Information Industry which is subsidized by the Ministry of
Economic Affairs of the Republic of China.

References

[1] K. Hanbay, M.F. Talu, O.F. Ozgiiven, Fabric defect detection systems and
methods—a systematic literature review, Optik 127 (24) (2016) 11960-11973.

[2] Y. Zhao, K. Hao, H. He, X. Tang, B. Wei, A visual long-short-term memory based
integrated CNN model for fabric defect image classification, Neurocomputing 380
(2020) 259-270, https://doi.org/10.1016/j.neucom.2019.10.067. doi: 10.1016/j.
neucom.2019.10.067.

[3] A.Z. da Costa, H.E. Figueroa, J.A. Fracarolli, Computer vision based detection of
external defects on tomatoes using deep learning, Biosyst. Eng. 190 (2020)
131-144, https://doi.org/10.1016/j.biosystemseng.2019.12.003. doi: 10.1016/j.
biosystemseng.2019.12.003.

[4] Z.Liu, Z. Huo, C. Li, Y. Dong, B. Li, DLSE-Net: A robust weakly supervised network
for fabric defect detection, Displays 68 (May) (2021), 102008, https://doi.org/
10.1016/j.displa.2021.102008. doi: 10.1016/j.displa.2021.102008.

http://refhub.elsevier.com/S0141-9382(22)00068-3/h0005
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0005
https://doi.org/10.1016/j.neucom.2019.10.067. doi: 10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067. doi: 10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.biosystemseng.2019.12.003. doi: 10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.biosystemseng.2019.12.003. doi: 10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.displa.2021.102008. doi: 10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008. doi: 10.1016/j.displa.2021.102008

A. Suryarasmi et al.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H.Y. Ngan, G.K. Pang, N.H. Yung, Automated fabric defect detectionA review,
Image Vis. Comput. 29 (7) (2011) 442-458, https://doi.org/10.1016/j.
imavis.2011.02.002. doi: 10.1016/j.imavis.2011.02.002.

G. Shu, W. Liu, X. Zheng, J. Li, IF-CNN: image-aware inference framework for CNN
with the collaboration of mobile devices and cloud, IEEE Access 6 (2018)
68621-68633, https://doi.org/10.1109/ACCESS.2018.2880196.

Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444,
https://doi.org/10.1038/nature14539.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2323, https://doi.org/
10.1109/5.726791.

R. Wang, Q. Guo, S. Lu, C. Zhang, Tire defect detection using fully convolutional
network, IEEE Access 7 (2019) 43502-43510.

H. Xie, Y. Zhang, Z. Wu, Fabric defect detection method combing image pyramid
and direction template, IEEE Access 7 (2019) 182320-182334, https://doi.org/
10.1109/ACCESS.2019.2959880.

S. Mei, Y. Wang, G. Wen, Automatic fabric defect detection with a multiscale
convolutional denoising autoencoder network model, Sensors (Switzerland) 18 (4)
(2018) 1-19, https://doi.org/10.3390/518041064.

Z. Liu, C. Zhang, C. Li, S. Ding, Y. Dong, Y. Huang, Fabric defect recognition using
optimized neural networks, J. Eng. Fiber. Fabr. 14 (41) (2019). doi: 10.1177/
1558925019897396.

H. Perez, J.H.M. Tah, A. Mosavi, Deep learning for detecting building defects using
convolutional neural networks, Sensors (Switzerland) 19 (16) (2019) 3556,
https://doi.org/10.3390/519163556.

D. Yu, Q. Xu, H. Guo, C. Zhao, Y. Lin, D. Li, An efficient and lightweight
convolutional neural network for remote sensing image scene classification,
Sensors (Switzerland) 20 (7) (2020) 1999, https://doi.org/10.3390/520071999.
J. Shen, N. Liu, H. Sun, H. Zhou, Vehicle Detection in Aerial Images Based on
Lightweight Deep Convolutional Network and Generative Adversarial Network,
IEEE Access 7 (2019) 148119-148130. doi:10.1109/ACCESS. 2019.2947143.

W. Jian, Y. Zhou, H. Liu, Lightweight convolutional neural network based on
singularity ROI for fingerprint classification, IEEE Access 8 (2020) 54554-54563,
https://doi.org/10.1109/ACCESS.2020.2981515.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Displays 73 (2022) 102241

Y. Wang, J. Yang, M. Liu, G. Gui, LightAMC: lightweight automatic modulation
classification via deep learning and compressive sensing, IEEE Trans. Veh. Technol.
69 (3) (2020) 3491-3495, https://doi.org/10.1109/TVT. 2020.2971001.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2: Inverted
Residuals and Linear Bottlenecks, Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (2018) 4510-4520arXiv:1801.04381, doi: 10.1109/
CVPR.2018.00474.

M. Tan, Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural
networks, 36th Int. Conf. Mach. Learn. ICML 2019 2019-June (2019)
10691-10700. arXiv:1905.11946.

G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected
convolutional networks, Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,
CVPR 2017 2017-Janua (2017) 2261-2269. arXiv: 8.06993, doi:10.1109/
CVPR.2017.243.

Y. Li, H. Huang, Q. Xie, L. Yao, Q. Chen, Research on a surface defect detection
algorithm based on MobileNet-SSD, Appl. Sci. 8 (9) (2018) 1678, https://doi.org/
10.3390/app8091678.

S. Vluymans, Learning from imbalanced data, Stud. Comput. Intell. 807 (9) (2019)
81-110, https://doi.org/10.1007/978-3-030-04663-7_4.

J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance,
J. Big Data 6 (1) (2019), https://doi.org/10.1186/s40537-019-0192-5. doi:
10.1186/540537-019-0192-5.

W. Ouyang, B. Xu, J. Hou, X. Yuan, Fabric defect detection using activation layer
embedded convolutional neural network, IEEE Access 7 (2019) 70130-70140,
https://doi.org/10.1109/ACCESS.2019.2913620.

K. Simonyan, A. Zisserman, Very deep convolutional networks for largescale image
recognition, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. (2015)
1-14arXiv:1409.1556.

A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep
convolutional neural networks, Commun. ACM (2017). doi:10.1145/ 3065386.
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM:
visual explanations from deep networks via gradient-based localization, Int. J.
Comput. Vis. 128 (2) (2020) 336-359.

L. Biewald, Experiment Tracking with Weights & Biases, Softw. available from
wandb. com (January) (2020) 1-5.

https://doi.org/10.1016/j. imavis.2011.02.002. doi: 10.1016/j.imavis.2011.02.002
https://doi.org/10.1016/j. imavis.2011.02.002. doi: 10.1016/j.imavis.2011.02.002
https://doi.org/10.1109/ACCESS.2018.2880196
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0045
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0045
https://doi.org/10.1109/ACCESS.2019.2959880
https://doi.org/10.1109/ACCESS.2019.2959880
https://doi.org/10.3390/s18041064
https://doi.org/10.3390/s19163556
https://doi.org/10.3390/s20071999
https://doi.org/10.1109/ACCESS.2020.2981515
https://doi.org/10.1109/TVT. 2020.2971001
https://doi.org/10.3390/app8091678
https://doi.org/10.3390/app8091678
https://doi.org/10.1007/978-3-030-04663-7_4
https://doi.org/10.1186/s40537-019-0192-5. doi: 10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5. doi: 10.1186/s40537-019-0192-5
https://doi.org/10.1109/ACCESS.2019.2913620
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0135
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0135
http://refhub.elsevier.com/S0141-9382(22)00068-3/h0135

	FN-Net: A lightweight CNN-based architecture for fabric defect detection with adaptive threshold-based class determination
	1 Introduction
	2 Datasets
	3 Proposed architecture and data processing workflow
	3.1 Architecture of FN-Net
	3.2 Class determination with adaptive threshold

	4 Experiment results and discussion
	4.1 Lightweightness evaluation
	4.2 Evaluation of class determination with adaptive threshold

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References

