

FN-Net: A Lightweight CNN-based Architecture for

Fabric Defect Detection with Adaptive Threshold-based
Class Determination

Anindita Suryarasmia, Chin-Chun Changb,1, Rania Akhmaliaa, Maysa Marshaliaa,
Wei-Jen Wanga, Deron Lianga

aNational Central University, No. 300, Zhongda Rd, Zhongli, Taiwan
bNational Taiwan Ocean University, No. 2, Beining Rd, Keelung, Taiwan

Abstract

Deep learning technologies based on Convolution Neural Networks (CNN) have

been widely used in fabric defect detection. On-site CNN model training and defect

detection offer several desirable properties for the fabric manufactures, such as

better data security and less connectivity requirements, when compared with the

on-cloud training approach. However, computers installed at the manufacturing

site are usually industrial computers with limited computing power, which are

not able to run many effective CNN models. A lightweight CNN model should be

used in this scenario, in order to find a balance point among defect detection,

efficiency, memory consumption and model training time. This paper presents a

lightweight CNN-based architecture for fabric defect detection. Compared with

VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art

architectures, the proposed architecture, namely FN-Net, can perform training 3

to 33 times as fast as these architectures with less graphics processing unit and

memory consumption. With adaptive class determination, FN-Net has an average

F1 score 0.86, while VGG16 and EfficientNet as the best and the worst among the

baseline models have 0.81 and 0.50, respectively.

1 Corresponding author

This is the preprint or submission version before being reviewed. The final or published version could be

found in https://doi.org/10.1016/j.displa.2022.102241

https://doi.org/10.1016/j.displa.2022.102241

2

Keywords: artificial intelligence, lightweight Convolutional Neural Network, fabric

manufacturing, AOI, defect detection

1. Introduction

Automatic fabric defect detection is critical in textile production for the ability

to distinguish defective and normal fabrics (Fig. 1) in the production quality

control. It reduces the risk of revenue loss due to the sale of defective fabrics [1].

Traditionally, the defect detection process is performed by professional

inspectors who examine the surface of the fabrics manually. This process can be

time-consuming, prone to human error, and leads to results with low reliability

and stability [2], [3], [4]. Consequently, the demands for automatic fabric defect

detection through image and video processing technologies have been increasing.

Numerous approaches, including structural, statistical, spectral, and model-based

approaches, have been proposed for automatic fabric defect detection to improve

fabric quality and reduce labor costs [1], [5].

Figure 1: (a) Sample of a defective fabric and (b) sample of a normal fabric with worn -out threads.

Rule-based Automated Optical Inspection (AOI) systems have been developed

and installed in the fabric production line for automatic fabric defect detection. In

this AOI system, several cameras were installed to capture image samples. The

images are sent to the industrial computer for defect detection. However, several

types of fabric conditions are misidentified by the AOI system. Those images are

considered as hard-case images, since the easy ones have been classified by the

AOI system. Consequently, the misclassified images must be manually examined

by the human inspector to determine whether they represent fabric defects. In

addition, the on-site installation is preferred to avoid privacy leakage issue if the

training is performed on cloud [6]. To address these challenges, an advanced

3

image processing approach, such as lightweight deep learning methods, must be

developed.

Deep learning is considered the best technique in many domains for

identifying complex structures in high-dimensional data [7]. Among deep learning

models, CNNs are the most suitable for image recognition, classification, and

detection [8]. Fabric defect detection and classification have been conducted by

fine-tuning existing CNN architectures, constructing new CNN architectures, and

combining two or more CNN architectures to enhance the results [2], [9],

[10], [11], [12], [13].

Due to their advantages, well-known deep CNN architectures are modified to

achieve satisfactory image-based defect detection results in fabric manufacturing

or other domains [2], [4], [12], [13]. Various studies have implemented CNNbased

architectures for fabric defect identification. Zhao et al. [2] constructed a model

by combining visual perceptron, visual long-term memory, and visual short-term

memory to classify defective fabrics. They achieved an accuracy of 99.47% for the

DHU-DF-500 dataset. Liu et al. [4] developed an effective weakly supervised

shallow network to localize the defective area of fabric with F1 score of 0.9346.

Liu et al. [12] optimized VGG16 to identify defective fabrics from the Xiamen

Face++ dataset, achieving an accuracy of 98.1%. Perez et al. [13] used pre-trained

VGG16 with object localization for automated detection of defects and

deterioration of buildings with success rate of around 91%. Table 1 provides

summary of the Deep CNN recent related studies.

Nevertheless, deep CNNs have certain disadvantages, such as their large file

sizes, numerous parameters, and high computational costs. Therefore, these

networks are unsuitable to be run on devices with limited computing power [14],

[15], [16], [17]. Consequently, lightweight CNN architectures have been

constructed to run image processing tasks, such as semantic segmentation and

image classification, efficiently on mobile devices [18], [19], [20]. They

successfully reduce the complexity and computational cost of the models with

slight trade-off on the accuracies and error rates. Lightweight CNN architectures

4

use relatively few parameters, which enables them to be run faster. Moreover, the

relatively small model size of these architectures enables them to be executed on

Table 1: Summary of Deep CNN Recent Related Studies

 Architecture

name

Dataset Methodology

Zhao et

al. [2]

VLSTM DHU-FD-500,

DHU-FD-1000 and

Aliyun-FD-10500
fabric dataset

Build visual long-short-term based

deep learning for fabric defect

detection.

Liu et al.

[4]

DLSE-Net DAGM2007 and

private fabric
dataset

Build a weakly supervised shallow

network to localize the defective area

of fabric.

Liu et al.

[12]

LZFNet private fabric
dataset

Fine-tuned VGG16 for optimized
fabric defect detection.

Perez et
al. [13]

CNN-CAM private buildings
dataset

Fine-tuned VGG16 paired with object

localization for buildings defect

detection.

hardware with limited computing power, such as mobile devices [20], [14], [16],

[17]. Several studies have constructed lightweight CNN architectures for image

classification and segmentation in various domains. Yu et al. [14] developed Bi-

MobileNet for remote sensing image classification. This network achieved an

overall accuracy of 94.08% for the NWPU-RESISC45 dataset with a training data

ratio of 20%, 7.76 million parameters, and 29.59 MB model size. Jian et al. [16]

constructed a lightweight CNN model for fingerprint classification. This model

achieved an accuracy of 93% with 816,261 parameters. Wang et al. [17]

developed Light-AMC, which has 1.3 MB model size, for automatic modulation

classification. Li et al. [20] optimized MobileNet to detect surface defects in chili

filling production. They achieved an accuracy of 95.00% with a training time less

than 1 day and a detection time of 0.12 seconds. Table 2 provides summary of the

lightweight recent related studies.

As an addition to the lightweight CNN’s accuracy compensation, imbalanced

5

Table 2: Summary of Lightweight CNN Recent Related Studies

 Architecture

name

Dataset Methodology

Yu et al.

[14]

BiMobileNet UCMerced, AID, and

NWPU-RESISC45

dataset

MobileNetV2 paired with bilinear
model for efficient and lightweight
remote sensing image classification.

Jian et al.
[16]

Jian et al.

[16]

NIST SD4

fingerprint dataset

A lightweight CNN structure based on

singularity ROI for fingerprint

recognition.

Li et al.

[21]

MobileNet-

SSD

Private industrial
chili filling image
dataset

Optimize MobileNet combined with

Single Shot Multibox Detector (SSD)
network for surface defect detection.

datasets can also negatively affect the performance of learning algorithms [22],

[23]. Various approaches have been proposed to overcome this, such as creating

samples within clusters, oversampling the minority class, and using alternative

metrics such as the F1 score, Area Under Curve (AUC) score, and G-mean [7], [22],

[23], [24], [4]. Among these metrics, the F1 score is commonly used to assess

models’ performance by using the numbers of True Positives (TPs), False

Positives (FPs), and False Negatives (FNs).

It is feasible to apply the state-of-the-art CNN architectures such as VGG16

[25], DenseNet [20], MobileNetV2 [18], and EfficientNet [19] for fabric defect

detection. However, those architectures are usually too complex to be run and

trained on an industrial computer with limited computing resources [12].

Therefore, this paper presents FN-Net, a simple lightweight CNN architecture for

image-based fabric defect detection. This architecture has a low number of

parameters, which leads to low computing resource demands. Furthermore,

adaptive threshold-based class determination is implemented to reduce the error

rate of the trained FN-Net for the defective images. This strategy allows the

maximum False Negative Rate (FNR) to be set to a certain value while minimizing

the False Positive Rate (FPR) by adjusting the threshold value in the class

6

determination process. Compared with VGG16, DenseNet, MobileNetV2, and

EfficientNet, FN-Net performs training 3 to 33 times as fast as these architectures

with less graphics processing unit and memory consumption. With adaptive class

determination, FN-Net has an average F1 score 0.86, while VGG16 and

EfficientNet as the best and the worst have 0.81 and 0.50, respectively.

The remainder of this paper is organized as follows. Section 2 specifies the

datasets used in this study; Section 3 presents the proposed approach for fabric

defect detection; Section 4 describes the experiments conducted in this study; and

Section 5 exhibits the summary of the proposed method and the conclusions.

2. Datasets

Two sets of Greige fabrics images from a fabric company in Taiwan are used

in this study. The images have gone through a rule-based AOI and misclassified as

defective. Each fabric image was acquired by capturing an area of a fabric roll by

using cameras set up under two lighting scenarios: reflected light and transmitted

light. Three cameras were installed for each lighting scenario. Cameras 1–3 were

used for reflected light imaging, and cameras 4–6 were used for transmitted light

imaging. The aforementioned six cameras were located inside glass boxes marked

with red and yellow lines (Fig. 2). In the reflected light scenario, the light sources

and cameras were located above the fabric roll, which allowed light to be

projected approximately at the same angles as the cameras. In the transmitted

light scenario, the cameras were located above the fabric roll, with the light

sources were located under the fabric roll, which allowed light to be projected

through the fabric. The distributions and samples of both datasets are presented

in TABLE 3 and TABLE 4. Both datasets contain different type of defect and

normal classes. Additionally, both datasets suffer from imbalance condition in a

different way. The majority samples of Dataset 1 belong to normal class, which

make up to 99.75% of total samples, while in Dataset 2, the majority class is the

defect class with 91.63% of total samples.

7

Figure 2: Fabric images captured using two lighting scenarios: transmitted light and reflected light.

Three cameras were used in each lighting scenario to capture fabric images.

The typical defect detection system requires one defect class and one normal

class as the input. However, since each normal classes have distinctive features,

and they came from AOI system’s false positive detection, they are easy to be

recognized as defective. Merging them into one normal class would result in the

loss of potentially useful information for classification. Therefore, a multiclass

classification was performed by retaining multiple normal classes and one defect

class. An additional procedure was required after multiclass classification to

ensure that the final classification was a binary classification.

All image samples are greyscale images with pixel values between 0 and 255,

and various sizes around 128 × 128 pixels (e.g., 130 × 130 and 132 × 135 pixels).

Before being input into the proposed network, the images were preprocessed by

being cropped to 128 × 128 pixels and the values were normalized between 0 and

1.

8

Table 3: Image Classes and Samples in Dataset 1
Classes Number of images Image samples

Defect 183

Normal - Seam 1,685

Normal - Dirt 32,621

Normal - Fringe 1,221

Normal - Fold 10,602

Normal - Thread-off 3,187

Normal - White-spot 23,159

Total number of defect images 179 0.25%

Total number of normal images 72,475 99.75%

Total number of images 72,654

Table 4: Image Classes and Samples in Dataset 2
Classes Number of images Image samples

Defect 11,502

Normal - Uneven cloth 19

Normal - Selvage 943

Normal - Seam 88

Total number of defect images 11,502 91.63%

Total number of normal images 1,050 8.37%

Total number of images 12,552

9

3. Proposed Architecture and Data Processing Workflow

This paper proposes FN-Net, a CNN-based architecture, for fabric defect

detection. FN-Net has a low computational cost because it uses relatively few

parameters; thus, this network has a short runtime and can be executed on

hardware devices with relatively low computing power. However, FN-Net might

have a low defect detection performance due to its lightweightness. Moreover, the

presence of unbalanced data between normal and defect classes might further

reduce the performance. To overcome these problems, an adaptive

thresholdbased class determination is conducted on the probability values

generated by FN-Net. By implementing these methods, a lightweight CNN-based

architecture can be constructed without compromising the detection accuracy.

3.1. Architecture of FN-Net

FN-Net receives 128 × 128-pixel grayscale images as inputs and produces

multiclass outputs, which are then converted into binary outputs (defect and

normal). Fig. 3 displays the architecture of FN-Net. It consists of four

convolutional layers with 16, 32, 64, and 96 channels. Each convolutional layer

has a 3 × 3 receptive field with zero padding, a stride of 1, and a Rectified Linear

Unit (ReLU) activation function. The stride and padding values are selected to

preserve the spatial size before max pooling is performed, and the ReLU activation

is used to enable the network to learn faster [26]. Each convolutional layer in the

proposed architecture is followed by a max pooling layer. The first two max

pooling layers have windows of 3 × 3 with a stride of 3, and the final two layers

have windows of 2 × 2 with a stride of 2. The windows and stride values are

selected such that the spatial size of the last max pooling layer is 3 × 3. To visualize

the ability of FN-Net’s convolution layers to locate the defective areas of fabrics,

gradient-based localization [27] is performed for the activation layer following

the final convolutional layer. The heat maps of the localization (Fig. 4) indicate the

defective areas of a fabric. This information is used by the following layers to

determine whether an image can be considered to represent a defective fabric.

10

Figure 3: Architecture of FN-Net, which consists of four convolution layers, four max pooling layers,

and three dense layers. The final dense layer acts as an output layer.

Figure 4: Heat maps of (a) Image number 1,000 and (b) Image number 11,000, which indicate the

ability of FN-Net to detect the defective areas of fabrics.

The stacks of convolutional and max pooling layers are followed by two fully

connected layers (i.e., dense layers) and an output layer. The first fully connected

layer derives the layers’ weights by flattening the nodes of the final max pooling

layer with a dropout of 0.5. This value means that half the nodes are randomly

selected and ignored during training to prevent overfitting. The first and second

fully connected layers possess 512 and 256 channels, respectively. Finally, the

output layer is responsible for performing classification. The number of channels

in the output layer depends on the number of datasets’ image classes. With such

configurations, FN-Net uses considerably fewer parameters than other

architectures as indicated in Table 5.

The output layer of FN-Net uses a softmax activation function to provide the

probabilities of each class (ranging from 0 to 1), with the sum of the probabilities

of all classes being 1. The probability values are commonly used to determine the

class of a given input.

11

Table 5: Number of Parameters Used by Different Architectures

Architecture Number of parameters

VGG16 63,989,365

MobileNetV2 2,401,351

EfficientNet 4,058,538

DenseNet 7,152,199

FN-Net 623,975

Because the dataset comprises multiple normal classes and only one defect class

as the output, the probabilities of the normal classes are combined to get one

probability for each defect and normal class. Furthermore, the imbalanced nature

of the dataset allows the prediction accuracy to be high even if all the minority

samples are misclassified. For example, if all the defect images in Dataset 1 are

misclassified as normal images, the classification accuracy is still 99.75%.

Therefore, an additional data processing must be conducted to interpret the CNN

probability values for increasing the prediction quality without CNN retraining,

and F1 score should be used instead of accuracy to evaluate the proposed

architecture.

3.2. Class Determination with Adaptive Threshold

Typically, the threshold values are the averages of adjacent probability values

for a given set of input images. The number of thresholds and their values can vary

between different prediction results. To avoid this situation, a set of threshold

values ranging from 0 to 1 in increments of 0.0001 is used. The results of the

comparisons between the threshold and defect probabilities are then used to

calculate the numbers of TPs, True Negatives (TNs), FPs, and FNs. In this paper,

defective images are labeled as positive and normal images are labeled as

negative.

Since both datasets suffer from imbalance problem, the proposed model tends

to minimize either FPR or FNR even if the other is significantly higher so that a

good prediction accuracy can be achieved. To prevent this situation, usually, Equal

12

Error Rate (EER) point, where the FPR is equal or close to the FNR, can be used as

a solution. However, using similar FPR and FNR values may not be the optimal

approach, especially in the case of an extremely imbalanced dataset. As an

alternative, a maximum FNR can be defined according to company’s

requirements, and the solution will be found by finding the minimum FPR value.

However, if the maximum FNR value is not specified, the solution can be selected

based on the best F1 score from various FNR values. The steps to perform the

adaptive threshold approach is listed as follows:

1. Set initial threshold values with 0 to 1 in increments of 0.0001.

2. Compare validation’s data defect probabilities with each threshold value.

3. Calculate F1 scores for each threshold value.

4. Select threshold that returns the specified FNR value or highest F1 score.

5. Apply threshold to the testing data.

4. Experiment Results and Discussion

Two experiments for two different datasets were conducted to demonstrate

the lightweightness and defect detection performance of FN-Net by comparing it

with VGG16, DenseNet, MobileNetV2, and EfficientNet. These four baseline

architectures were implemented using Keras modules in Python 3.7.7 and

TensorFlow 2.3.1. We also demonstrated the ability of the adaptive threshold-

based class determination to tune the proposed model’s performance on the basis

of different thresholds.

In each experiment, the datasets were split into 90% and 10% for training and

testing, respectively. It ensures the training data not to be included in the testing

phase. Additionally, the validation sets were split from the training set and

consisted of as much as 10% of the training data. Hyperparameters were selected

on the basis of the validation data, and the presented results were obtained from

the testing data. Each experiment was conducted 5 times and the average results

were considered.

13

This section is divided into two parts. Section 4.1 presents runtime and

resource consumption results of FN-Net and the baseline CNN architectures.

Section 4.2 presents the results of adaptive data processing and the thresholds

selection according to the F1 scores.

To compare the five considered architectures, their F1 scores, along with the

corresponding accuracies and FNR were determined as shown in (1 to 3). By

applying multiple threshold values to the prediction results of validation data,

various FNR values were obtained for the calculation of the F1 score. The highest

F1 scores were then selected, and the corresponding thresholds were applied to

the testing data to obtain the prediction results.

 𝐹1 =
𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
 (1)

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2)

 𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (3)

4.1. Lightweightness Evaluation

The computational cost experiment was conducted to prove that FN-Net can

perform efficiently with a low computation cost, short execution time, and small

model size. We recorded the Graphics Processing Unit (GPU) utilization, memory,

and runtime in both the training and testing phases with Datasets 1 and 2 by using

the wandb.ai module [28]. The computing host consisted of an Intel® Core™ i7-

900 CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 64 GB of RAM. The operating

system of this host was 64-bit Microsoft Windows 10 Enterprise.

TABLE 6 presents the model sizes of the architectures. It shows that FN-Net is

only 25% the size of MobileNetV2, which was the smallest baseline models. As

14

Table 6: Model Sizes of the Compared Architectures

Architecture Model size (MB)

VGG16 500

MobileNetV2 28

EfficientNet 48

DenseNet 84

FN-Net 7

for the computational cost, TABLE 7 indicates that DenseNet had the longest

training time, while MobileNetV2 had the shortest training time among the

baselines. The runtime of FN-Net was 73% and 6% of MobileNetV2 for Datasets 1

and 2, respectively. In the testing phase, FN-Net consistently had the shortest

runtime, with an average of 0.17 minutes for both datasets. This runtime was 37%

the average runtime of the baseline models.

The highest GPU utilization of the training and testing phase was obtained by

VGG16 with average values of 94% and 90%, respectively; while the lowest GPU

utilization of baseline architecture was obtained by DenseNet with 76.01% for

training and MobileNetV2 with average value of 78.5%. Compared with the

DenseNet, FN-Net had less 4% GPU utilization. As for the memory utilization, FN-

Net had 78% of EfficientNet as the lowest among the baselines. The results

confirmed that the proposed FN-Net was considerably smaller, faster, and

required less computing power than the baseline models.

4.2. Evaluation of Class Determination with Adaptive Threshold

An experiment was conducted to demonstrate the suitability of adaptive

threshold-based class determination. It allows the selection of certain FNR values

and the determination of the corresponding threshold and mean F1 score for

evaluating the selected solution. To illustrate the multiple solutions obtained by

compared networks, Fig. 5 displays the F1 scores for different FNR values when

using validation data from Datasets 1. The highest F1 score for Dataset 1 (0.78)

was obtained when the FNR was 0.18 and FPR was 0.00.

15

Table 7: Runtime, GPU Utilization, and Memory Utilization of the Compared Architectures

 Dataset 1 Dataset 2

 Training Testing Training Testing

 Runtime GPU Memory

(min.) (%) (MB)

Runtime GPU Memory

(min.) (%) (MB)

Runtime GPU Memory

(min.) (%) (MB)

Runtime GPU Memory

(min.) (%) (MB)

VGG16 30.2 94 59.1 1.18 90 74.42 3.9 94 35.93 0.22 90 42.96

MobileNetV2 13.4 93 57.61 0.74 79 60.16 1.97 93 39.3 0.21 78 40.35

EfficientNet 29.4 89 50.96 1.07 81 59.65 4.6 89 42.45 0.31 82 41.51

DenseNet 43.6 87 57.68 1.28 75 58.71 4.06 87 36.5 0.36 86 40.81

FN-Net 9.8 83 43.56 0.26 52 40.63 0.11 83 29.48 0.08 42 36.53

The preferred solutions in this paper are presented by selecting the best F1 scores

points (marked with x) within the graphs displayed in Fig. 5. Nevertheless, any

points in the graph are feasible solutions that can be selected according to the

company’s requirements as described in Section 3.2.

Figure 5: Validation results of FN-Net for Dataset 1 at various FNR values. The best F1 scores (red

crosses) are the commonly used points in threshold selection. However, any points in the graph are

feasible solutions.

16

Table 8: Highest F1 scores Obtained for Various Architectures

 Dataset 1 Dataset 2

 Highest F1 score Argmax Highest F1 score Argmax

 F1 Corr.

scores ACC

Corr.

FNR

 F1 Corr.

scores ACC

Corr.

FNR

 F1 Corr.

scores ACC

Corr.

FNR

 F1 Corr.

scores ACC

Corr.

FNR

VGG16 0.62 0.99 0.40 0.60 0.99 0.40 0.99 0.99 0 0.99 0.99 0

MobileNetV2 0.05 0.04 0.01 0.00 0.99 1 0.98 0.95 0 0.97 0.96 0

EfficientNet 0.04 0.40 0.38 0.00 0.99 1 0.97 0.95 0 0.97 0.96 0

DenseNet 0.33 0.99 0.68 0.62 0.99 0.44 0.98 0.97 0 0.97 0.96 0.03

FN-Net 0.72 0.99 0.36 0.60 0.99 0.33 0.99 0.99 0 0.99 0.99 0

To demonstrate the effectiveness of the adaptive threshold-based class de

termination, the approach was applied to all five architectures, and the results are

presented in Table 8. Among the baseline models, the best F1 scores of Dataset 1

was obtained by VGG16 with 0.62, while the worse was EfficientNet with 0.04.

Even though the corresponding accuracies of the VGG16, DenseNet, and FN-Net

reached 0.99, with lower FNR of 0.36, FN-Net achieved better F1 score by 0.1

compared to VGG16. When the adaptive approach was not applied, the accuracies

of all the models reaches optimum value by 0.99. However, MobileNetV2 and

EfficientNet return FNR value of 1, which implies that the whole defect samples

were mispredicted as normal. As for the Dataset 2, both VGG16 and FN-Net had

0.99 F1 scores with corresponding accuracies of 0.99 and corresponding FNR of

0. The results confirmed that the proposed FN-Net was able to obtain better

classification results while maintaining less computing resources than the

baseline models.

17

5. Conclusions

This paper presents FN-Net, a lightweight CNN-based architecture for fabric

defect detection. This architecture is currently the best solution for overcoming

the hardware limitations of on-site industrial computers in fabric manufacturing.

Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet, the proposed

architecture enables image-based defect detection to be performed with a

considerably lower computational cost and significantly higher speed. Moreover,

the results of the proposed method are better compared to the aforementioned

state-of-the-art lightweight architectures. We demonstrated that the adaptive-

threshold-based class determination can dynamically adjust the prediction

results of existing trained models without the need for retraining.

Acknowledgement

This study is conducted under the “Research & Development Project for

IntelliGEMt Cloud Service Platform for Machinery Industry” of the Institute for

Information Industry which is subsidized by the Ministry of Economic Affairs of

the Republic of China.

References

[1] K. Hanbay, M. F. Talu, O. F. ̈Ozgu¨ven,¨ Fabric defect detection systems and

methods—A systematic literature review, Optik (Stuttg). 127 (24) (2016)

11960–11973. doi:10.1016/j.ijleo.2016.09.110.

URL http://dx.doi.org/10.1016/j.ijleo.2016.09.110

[2] Y. Zhao, K. Hao, H. He, X. Tang, B. Wei, A visual long-short-term memory

based integrated CNN model for fabric defect image classification,

Neurocomputing 380 (2020) 259–270. doi:10.1016/j.neucom.2019.10.067.

URL https://doi.org/10.1016/j.neucom.2019.10.067

[3] A. Z. da Costa, H. E. Figueroa, J. A. Fracarolli, Computer vision based detection

of external defects on tomatoes using deep learning, Biosyst. Eng.

http://dx.doi.org/10.1016/j.ijleo.2016.09.110
http://dx.doi.org/10.1016/j.ijleo.2016.09.110
http://dx.doi.org/10.1016/j.ijleo.2016.09.110
https://doi.org/10.1016/j.ijleo.2016.09.110
https://doi.org/10.1016/j.ijleo.2016.09.110
http://dx.doi.org/10.1016/j.ijleo.2016.09.110
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.neucom.2019.10.067
https://doi.org/10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.biosystemseng.2019.12.003

18

190 (2020) 131–144. doi:10.1016/j.biosystemseng.2019.12.003.

URL https://doi.org/10.1016/j.biosystemseng.2019.12.003

[4] Z. Liu, Z. Huo, C. Li, Y. Dong, B. Li, DLSE-Net: A robust weakly supervised

network for fabric defect detection, Displays 68 (May) (2021) 102008.

doi:10.1016/j.displa.2021.102008.

URL https://doi.org/10.1016/j.displa.2021.102008

[5] H. Y. Ngan, G. K. Pang, N. H. Yung, Automated fabric defect detectionA review,

Image Vis. Comput. 29 (7) (2011) 442–458. doi:10.1016/j. imavis.2011.02.002.

URL http://dx.doi.org/10.1016/j.imavis.2011.02.002

[6] G. Shu, W. Liu, X. Zheng, J. Li, IF-CNN: Image-Aware Inference Framework for

CNN With the Collaboration of Mobile Devices and Cloud, IEEE Access 6

(2018) 68621–68633. doi:10.1109/ACCESS.2018.2880196.

[7] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–

444. doi:10.1038/nature14539.

[8] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2323.

doi:10.1109/5.726791.

[9] R. Wang, Q. Guo, S. Lu, C. Zhang, Tire Defect Detection Using Fully

Convolutional Network, IEEE Access 7 (2019) 43502–43510. doi:10.1109/

ACCESS.2019.2908483.

[10] H. Xie, Y. Zhang, Z. Wu, Fabric Defect Detection Method Combing Image

Pyramid and Direction Template, IEEE Access 7 (2019) 182320–182334.

doi:10.1109/ACCESS.2019.2959880 .

[11] S. Mei, Y. Wang, G. Wen, Automatic fabric defect detection with a multiscale

convolutional denoising autoencoder network model, Sensors (Switzerland)

18 (4) (2018) 1–19. doi:10.3390/s18041064.

https://doi.org/10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.biosystemseng.2019.12.003
https://doi.org/10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008
https://doi.org/10.1016/j.displa.2021.102008
http://dx.doi.org/10.1016/j.imavis.2011.02.002
http://dx.doi.org/10.1016/j.imavis.2011.02.002
https://doi.org/10.1016/j.imavis.2011.02.002
https://doi.org/10.1016/j.imavis.2011.02.002
https://doi.org/10.1016/j.imavis.2011.02.002
http://dx.doi.org/10.1016/j.imavis.2011.02.002
https://doi.org/10.1109/ACCESS.2018.2880196
https://doi.org/10.1109/ACCESS.2018.2880196
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2019.2908483
https://doi.org/10.1109/ACCESS.2019.2908483
https://doi.org/10.1109/ACCESS.2019.2908483
https://doi.org/10.1109/ACCESS.2019.2908483
https://doi.org/10.1109/ACCESS.2019.2959880
https://doi.org/10.1109/ACCESS.2019.2959880
https://doi.org/10.3390/s18041064
https://doi.org/10.3390/s18041064

19

[12] Z. Liu, C. Zhang, C. Li, S. Ding, Y. Dong, Y. Huang, Fabric defect recognition

using optimized neural networks, J. Eng. Fiber. Fabr. 14 (41) (2019).

doi:10.1177/1558925019897396.

[13] H. Perez, J. H. Tah, A. Mosavi, Deep learning for detecting building defects

using convolutional neural networks, Sensors (Switzerland) 19 (16) (2019).

doi:10.3390/s19163556.

[14] D. Yu, Q. Xu, H. Guo, C. Zhao, Y. Lin, D. Li, An efficient and lightweight

convolutional neural network for remote sensing image scene classification,

Sensors (Switzerland) 20 (7) (2020). doi:10.3390/s20071999.

[15] J. Shen, N. Liu, H. Sun, H. Zhou, Vehicle Detection in Aerial Images Based on

Lightweight Deep Convolutional Network and Generative Adversarial

Network, IEEE Access 7 (2019) 148119–148130. doi:10.1109/ACCESS.

2019.2947143.

[16] W. Jian, Y. Zhou, H. Liu, Lightweight Convolutional Neural Network Based on

Singularity ROI for Fingerprint Classification, IEEE Access 8 (2020) 54554–

54563. doi:10.1109/ACCESS.2020.2981515.

[17] Y. Wang, J. Yang, M. Liu, G. Gui, LightAMC: Lightweight Automatic

Modulation Classification via Deep Learning and Compressive Sensing,

IEEE Trans. Veh. Technol. 69 (3) (2020) 3491–3495. doi:10.1109/TVT.

2020.2971001.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2:

Inverted Residuals and Linear Bottlenecks, Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit. (2018) 4510–4520arXiv:1801.04381, doi:

10.1109/CVPR.2018.00474.

[19] M. Tan, Q. V. Le, EfficientNet: Rethinking model scaling for convolutional

neural networks, 36th Int. Conf. Mach. Learn. ICML 2019 2019-June (2019)

10691–10700. arXiv:1905.11946.

https://doi.org/10.1177/1558925019897396
https://doi.org/10.1177/1558925019897396
https://doi.org/10.3390/s19163556
https://doi.org/10.3390/s19163556
https://doi.org/10.3390/s20071999
https://doi.org/10.3390/s20071999
https://doi.org/10.1109/ACCESS.2019.2947143
https://doi.org/10.1109/ACCESS.2019.2947143
https://doi.org/10.1109/ACCESS.2019.2947143
https://doi.org/10.1109/ACCESS.2019.2947143
https://doi.org/10.1109/ACCESS.2020.2981515
https://doi.org/10.1109/ACCESS.2020.2981515
https://doi.org/10.1109/TVT.2020.2971001
https://doi.org/10.1109/TVT.2020.2971001
https://doi.org/10.1109/TVT.2020.2971001
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946

20

[20] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected

convolutional networks, Proc. - 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR 2017 2017-Janua (2017) 2261–2269. arXiv:

1608.06993, doi:10.1109/CVPR.2017.243.

[21] Y. Li, H. Huang, Q. Xie, L. Yao, Q. Chen, Research on a surface defect detection

algorithm based on MobileNet-SSD, Appl. Sci. 8 (9) (2018). doi:

10.3390/app8091678.

[22] S. Vluymans, Learning from imbalanced data, Stud. Comput. Intell. 807 (9)

(2019) 81–110. doi:10.1007/978-3-030-04663-7_4.

[23] J. M. Johnson, T. M. Khoshgoftaar, Survey on deep learning with class

imbalance, J. Big Data 6 (1) (2019). doi:10.1186/s40537-019-0192-5.

URL https://doi.org/10.1186/s40537-019-0192-5

[24] W. Ouyang, B. Xu, J. Hou, X. Yuan, Fabric Defect Detection Using Activation

Layer Embedded Convolutional Neural Network, IEEE Access (2019).

doi:10.1109/ACCESS.2019.2913620.

[25] K. Simonyan, A. Zisserman, Very deep convolutional networks for largescale

image recognition, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track

Proc. (2015) 1–14arXiv:1409.1556.

[26] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep

convolutional neural networks, Commun. ACM (2017). doi:10.1145/ 3065386.

[27] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-

CAM: Visual Explanations from Deep Networks via Gradient-Based

Localization, Int. J. Comput. Vis. 128 (2) (2020) 336–359. arXiv:1610. 02391,

doi:10.1007/s11263-019-01228-7.

[28] L. Biewald, Experiment Tracking with Weights & Biases, Softw. available

from wandb. com (January) (2020) 1–5.

http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3390/app8091678
https://doi.org/10.3390/app8091678
https://doi.org/10.3390/app8091678
https://doi.org/10.3390/app8091678
https://doi.org/10.1007/978-3-030-04663-7_4
https://doi.org/10.1007/978-3-030-04663-7_4
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/ACCESS.2019.2913620
https://doi.org/10.1109/ACCESS.2019.2913620
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7

21

List of Acronyms and Abbreviations

AOI Automated Optical Inspection. 2

AUC Area Under Curve. 5

CNN Convolutional Neural Network. 1

EER Equal Error Rate. 12

FN False Negative. 5

FNR False Negative Rate. 6

FP False Positive. 5

FPR False Positive Rate. 6

GPU Graphics Processing Unit. 13

ReLU Rectified Linear Unit. 9

SSD Single Shot Multibox Detector. 5

TN True Negative. 11

TP True Positive. 5

