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Abstract 

Deep learning technologies based on Convolution Neural Networks (CNN) have 

been widely used in fabric defect detection. On-site CNN model training and defect 

detection offer several desirable properties for the fabric manufactures, such as 

better data security and less connectivity requirements, when compared with the 

on-cloud training approach. However, computers installed at the manufacturing 

site are usually industrial computers with limited computing power, which are 

not able to run many effective CNN models. A lightweight CNN model should be 

used in this scenario, in order to find a balance point among defect detection, 

efficiency, memory consumption and model training time. This paper presents a 

lightweight CNN-based architecture for fabric defect detection. Compared with 

VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art 

architectures, the proposed architecture, namely FN-Net, can perform training 3 

to 33 times as fast as these architectures with less graphics processing unit and 

memory consumption. With adaptive class determination, FN-Net has an average 

F1 score 0.86, while VGG16 and EfficientNet as the best and the worst among the 

baseline models have 0.81 and 0.50, respectively.  

                                                             

1 Corresponding author 

This is the preprint or submission version before being reviewed. The final or published version could be 

found in https://doi.org/10.1016/j.displa.2022.102241  

https://doi.org/10.1016/j.displa.2022.102241


2 

Keywords: artificial intelligence, lightweight Convolutional Neural Network, fabric 

manufacturing, AOI, defect detection 

 
1. Introduction 

Automatic fabric defect detection is critical in textile production for the ability 

to distinguish defective and normal fabrics (Fig. 1) in the production quality 

control. It reduces the risk of revenue loss due to the sale of defective fabrics [1]. 

Traditionally, the defect detection process is performed by professional 

inspectors who examine the surface of the fabrics manually. This process can be 

time-consuming, prone to human error, and leads to results with low reliability 

and stability [2], [3], [4]. Consequently, the demands for automatic fabric defect 

detection through image and video processing technologies have been increasing. 

Numerous approaches, including structural, statistical, spectral, and model-based 

approaches, have been proposed for automatic fabric defect detection to improve 

fabric quality and reduce labor costs [1], [5]. 

 

Figure 1: (a) Sample of a defective fabric and (b) sample of a normal fabric with worn -out threads. 

 

Rule-based Automated Optical Inspection (AOI) systems have been developed 

and installed in the fabric production line for automatic fabric defect detection. In 

this AOI system, several cameras were installed to capture image samples. The 

images are sent to the industrial computer for defect detection. However, several 

types of fabric conditions are misidentified by the AOI system. Those images are 

considered as hard-case images, since the easy ones have been classified by the 

AOI system. Consequently, the misclassified images must be manually examined 

by the human inspector to determine whether they represent fabric defects. In 

addition, the on-site installation is preferred to avoid privacy leakage issue if the 

training is performed on cloud [6]. To address these challenges, an advanced 
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image processing approach, such as lightweight deep learning methods, must be 

developed. 

Deep learning is considered the best technique in many domains for 

identifying complex structures in high-dimensional data [7]. Among deep learning 

models, CNNs are the most suitable for image recognition, classification, and 

detection [8]. Fabric defect detection and classification have been conducted by 

fine-tuning existing CNN architectures, constructing new CNN architectures, and 

combining two or more CNN architectures to enhance the results [2], [9], 

[10], [11], [12], [13]. 

Due to their advantages, well-known deep CNN architectures are modified to 

achieve satisfactory image-based defect detection results in fabric manufacturing 

or other domains [2], [4], [12], [13]. Various studies have implemented CNNbased 

architectures for fabric defect identification. Zhao et al. [2] constructed a model 

by combining visual perceptron, visual long-term memory, and visual short-term 

memory to classify defective fabrics. They achieved an accuracy of 99.47% for the 

DHU-DF-500 dataset. Liu et al. [4] developed an effective weakly supervised 

shallow network to localize the defective area of fabric with F1 score of 0.9346. 

Liu et al. [12] optimized VGG16 to identify defective fabrics from the Xiamen 

Face++ dataset, achieving an accuracy of 98.1%. Perez et al. [13] used pre-trained 

VGG16 with object localization for automated detection of defects and 

deterioration of buildings with success rate of around 91%. Table 1 provides 

summary of the Deep CNN recent related studies. 

Nevertheless, deep CNNs have certain disadvantages, such as their large file 

sizes, numerous parameters, and high computational costs. Therefore, these 

networks are unsuitable to be run on devices with limited computing power [14], 

[15], [16], [17]. Consequently, lightweight CNN architectures have been 

constructed to run image processing tasks, such as semantic segmentation and 

image classification, efficiently on mobile devices [18], [19], [20]. They 

successfully reduce the complexity and computational cost of the models with 

slight trade-off on the accuracies and error rates. Lightweight CNN architectures 
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use relatively few parameters, which enables them to be run faster. Moreover, the 

relatively small model size of these architectures enables them to be executed on 

Table 1: Summary of Deep CNN Recent Related Studies 

 Architecture 

name 

Dataset Methodology 

Zhao et 

al. [2] 

VLSTM DHU-FD-500, 

DHU-FD-1000 and 

Aliyun-FD-10500 
fabric dataset 

Build visual long-short-term based 

deep learning for fabric defect 

detection. 

Liu et al. 

[4] 

DLSE-Net DAGM2007 and 

private fabric 
dataset 

Build a weakly supervised shallow 

network to localize the defective area 

of fabric. 

Liu et al. 

[12] 

LZFNet private fabric 
dataset 

Fine-tuned VGG16 for optimized 
fabric defect detection. 

Perez et 
al. [13] 

CNN-CAM private buildings 
dataset 

Fine-tuned VGG16 paired with object 

localization for buildings defect 

detection. 

hardware with limited computing power, such as mobile devices [20], [14], [16], 

[17]. Several studies have constructed lightweight CNN architectures for image 

classification and segmentation in various domains. Yu et al. [14] developed Bi-

MobileNet for remote sensing image classification. This network achieved an 

overall accuracy of 94.08% for the NWPU-RESISC45 dataset with a training data 

ratio of 20%, 7.76 million parameters, and 29.59 MB model size. Jian et al. [16] 

constructed a lightweight CNN model for fingerprint classification. This model 

achieved an accuracy of 93% with 816,261 parameters. Wang et al. [17] 

developed Light-AMC, which has 1.3 MB model size, for automatic modulation 

classification. Li et al. [20] optimized MobileNet to detect surface defects in chili 

filling production. They achieved an accuracy of 95.00% with a training time less 

than 1 day and a detection time of 0.12 seconds. Table 2 provides summary of the 

lightweight recent related studies. 

As an addition to the lightweight CNN’s accuracy compensation, imbalanced 



5 

Table 2: Summary of Lightweight CNN Recent Related Studies 

 Architecture 

name 

Dataset Methodology 

Yu et al. 

[14] 

BiMobileNet UCMerced, AID, and 

NWPU-RESISC45 

dataset 

MobileNetV2 paired with bilinear 
model for efficient and lightweight 
remote sensing image classification. 

Jian et al. 
[16] 

Jian et al. 

[16] 

NIST SD4 

fingerprint dataset 

A lightweight CNN structure based on 

singularity ROI for fingerprint 

recognition. 

Li et al. 

[21] 

MobileNet- 

SSD 

Private industrial 
chili filling image 
dataset 

Optimize MobileNet combined with 

Single Shot Multibox Detector (SSD) 
network for surface defect detection. 

datasets can also negatively affect the performance of learning algorithms [22], 

[23]. Various approaches have been proposed to overcome this, such as creating 

samples within clusters, oversampling the minority class, and using alternative 

metrics such as the F1 score, Area Under Curve (AUC) score, and G-mean [7], [22], 

[23], [24], [4]. Among these metrics, the F1 score is commonly used to assess 

models’ performance by using the numbers of True Positives (TPs), False 

Positives (FPs), and False Negatives (FNs). 

It is feasible to apply the state-of-the-art CNN architectures such as VGG16 

[25], DenseNet [20], MobileNetV2 [18], and EfficientNet [19] for fabric defect 

detection. However, those architectures are usually too complex to be run and 

trained on an industrial computer with limited computing resources [12]. 

Therefore, this paper presents FN-Net, a simple lightweight CNN architecture for 

image-based fabric defect detection. This architecture has a low number of 

parameters, which leads to low computing resource demands. Furthermore, 

adaptive threshold-based class determination is implemented to reduce the error 

rate of the trained FN-Net for the defective images. This strategy allows the 

maximum False Negative Rate (FNR) to be set to a certain value while minimizing 

the False Positive Rate (FPR) by adjusting the threshold value in the class 
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determination process. Compared with VGG16, DenseNet, MobileNetV2, and 

EfficientNet, FN-Net performs training 3 to 33 times as fast as these architectures 

with less graphics processing unit and memory consumption. With adaptive class 

determination, FN-Net has an average F1 score 0.86, while VGG16 and 

EfficientNet as the best and the worst have 0.81 and 0.50, respectively. 

The remainder of this paper is organized as follows. Section 2 specifies the 

datasets used in this study; Section 3 presents the proposed approach for fabric 

defect detection; Section 4 describes the experiments conducted in this study; and 

Section 5 exhibits the summary of the proposed method and the conclusions.  

2. Datasets 

Two sets of Greige fabrics images from a fabric company in Taiwan are used 

in this study. The images have gone through a rule-based AOI and misclassified as 

defective. Each fabric image was acquired by capturing an area of a fabric roll by 

using cameras set up under two lighting scenarios: reflected light and transmitted 

light. Three cameras were installed for each lighting scenario. Cameras 1–3 were 

used for reflected light imaging, and cameras 4–6 were used for transmitted light 

imaging. The aforementioned six cameras were located inside glass boxes marked 

with red and yellow lines (Fig. 2). In the reflected light scenario, the light sources 

and cameras were located above the fabric roll, which allowed light to be 

projected approximately at the same angles as the cameras. In the transmitted 

light scenario, the cameras were located above the fabric roll, with the light 

sources were located under the fabric roll, which allowed light to be projected 

through the fabric. The distributions and samples of both datasets are presented 

in TABLE 3 and TABLE 4. Both datasets contain different type of defect and 

normal classes. Additionally, both datasets suffer from imbalance condition in a 

different way. The majority samples of Dataset 1 belong to normal class, which 

make up to 99.75% of total samples, while in Dataset 2, the majority class is the 

defect class with 91.63% of total samples. 
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Figure 2: Fabric images captured using two lighting scenarios: transmitted light and reflected light. 

Three cameras were used in each lighting scenario to capture fabric images. 

 

The typical defect detection system requires one defect class and one normal 

class as the input. However, since each normal classes have distinctive features, 

and they came from AOI system’s false positive detection, they are easy to be 

recognized as defective. Merging them into one normal class would result in the 

loss of potentially useful information for classification. Therefore, a multiclass 

classification was performed by retaining multiple normal classes and one defect 

class. An additional procedure was required after multiclass classification to 

ensure that the final classification was a binary classification. 

All image samples are greyscale images with pixel values between 0 and 255, 

and various sizes around 128 × 128 pixels (e.g., 130 × 130 and 132 × 135 pixels). 

Before being input into the proposed network, the images were preprocessed by 

being cropped to 128 × 128 pixels and the values were normalized between 0 and 

1. 
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Table 3: Image Classes and Samples in Dataset 1  
Classes Number of images Image samples 

Defect 183  

Normal - Seam 1,685 
 

Normal - Dirt 32,621 
 

Normal - Fringe 1,221 
 

Normal - Fold 10,602 
 

Normal - Thread-off 3,187 
 

Normal - White-spot 23,159  

Total number of defect images 179 0.25% 

Total number of normal images 72,475 99.75% 

Total number of images 72,654  

 

 

Table 4: Image Classes and Samples in Dataset 2  
Classes Number of images Image samples 

Defect 11,502  

Normal - Uneven cloth 19 
 

Normal - Selvage 943 
 

Normal - Seam 88  

Total number of defect images 11,502 91.63% 

Total number of normal images 1,050 8.37% 

Total number of images 12,552  
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3. Proposed Architecture and Data Processing Workflow 

This paper proposes FN-Net, a CNN-based architecture, for fabric defect 

detection. FN-Net has a low computational cost because it uses relatively few 

parameters; thus, this network has a short runtime and can be executed on 

hardware devices with relatively low computing power. However, FN-Net might 

have a low defect detection performance due to its lightweightness. Moreover, the 

presence of unbalanced data between normal and defect classes might further 

reduce the performance. To overcome these problems, an adaptive 

thresholdbased class determination is conducted on the probability values 

generated by FN-Net. By implementing these methods, a lightweight CNN-based 

architecture can be constructed without compromising the detection accuracy. 

3.1. Architecture of FN-Net 

FN-Net receives 128 × 128-pixel grayscale images as inputs and produces 

multiclass outputs, which are then converted into binary outputs (defect and 

normal). Fig. 3 displays the architecture of FN-Net. It consists of four 

convolutional layers with 16, 32, 64, and 96 channels. Each convolutional layer 

has a 3 × 3 receptive field with zero padding, a stride of 1, and a Rectified Linear 

Unit (ReLU) activation function. The stride and padding values are selected to 

preserve the spatial size before max pooling is performed, and the ReLU activation 

is used to enable the network to learn faster [26]. Each convolutional layer in the 

proposed architecture is followed by a max pooling layer. The first two max 

pooling layers have windows of 3 × 3 with a stride of 3, and the final two layers 

have windows of 2 × 2 with a stride of 2. The windows and stride values are 

selected such that the spatial size of the last max pooling layer is 3 × 3. To visualize 

the ability of FN-Net’s convolution layers to locate the defective areas of fabrics, 

gradient-based localization [27] is performed for the activation layer following 

the final convolutional layer. The heat maps of the localization (Fig. 4) indicate the 

defective areas of a fabric. This information is used by the following layers to 

determine whether an image can be considered to represent a defective fabric. 
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Figure 3: Architecture of FN-Net, which consists of four convolution layers, four max pooling layers, 

and three dense layers. The final dense layer acts as an output layer. 

 

Figure 4: Heat maps of (a) Image number 1,000 and (b) Image number 11,000, which indicate the 

ability of FN-Net to detect the defective areas of fabrics. 

The stacks of convolutional and max pooling layers are followed by two fully 

connected layers (i.e., dense layers) and an output layer. The first fully connected 

layer derives the layers’ weights by flattening the nodes of the final max pooling 

layer with a dropout of 0.5. This value means that half the nodes are randomly 

selected and ignored during training to prevent overfitting. The first and second 

fully connected layers possess 512 and 256 channels, respectively. Finally, the 

output layer is responsible for performing classification. The number of channels 

in the output layer depends on the number of datasets’ image classes. With such 

configurations, FN-Net uses considerably fewer parameters than other 

architectures as indicated in Table 5. 

The output layer of FN-Net uses a softmax activation function to provide the 

probabilities of each class (ranging from 0 to 1), with the sum of the probabilities 

of all classes being 1. The probability values are commonly used to determine the 

class of a given input. 
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Table 5: Number of Parameters Used by Different Architectures 

Architecture Number of parameters 

VGG16 63,989,365 

MobileNetV2 2,401,351 

EfficientNet 4,058,538 

DenseNet 7,152,199 

FN-Net 623,975 

Because the dataset comprises multiple normal classes and only one defect class 

as the output, the probabilities of the normal classes are combined to get one 

probability for each defect and normal class. Furthermore, the imbalanced nature 

of the dataset allows the prediction accuracy to be high even if all the minority 

samples are misclassified. For example, if all the defect images in Dataset 1 are 

misclassified as normal images, the classification accuracy is still 99.75%. 

Therefore, an additional data processing must be conducted to interpret the CNN 

probability values for increasing the prediction quality without CNN retraining, 

and F1 score should be used instead of accuracy to evaluate the proposed 

architecture. 

3.2. Class Determination with Adaptive Threshold 

Typically, the threshold values are the averages of adjacent probability values 

for a given set of input images. The number of thresholds and their values can vary 

between different prediction results. To avoid this situation, a set of threshold 

values ranging from 0 to 1 in increments of 0.0001 is used. The results of the 

comparisons between the threshold and defect probabilities are then used to 

calculate the numbers of TPs, True Negatives (TNs), FPs, and FNs. In this paper, 

defective images are labeled as positive and normal images are labeled as 

negative. 

Since both datasets suffer from imbalance problem, the proposed model tends 

to minimize either FPR or FNR even if the other is significantly higher so that a 

good prediction accuracy can be achieved. To prevent this situation, usually, Equal 
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Error Rate (EER) point, where the FPR is equal or close to the FNR, can be used as 

a solution. However, using similar FPR and FNR values may not be the optimal 

approach, especially in the case of an extremely imbalanced dataset. As an 

alternative, a maximum FNR can be defined according to company’s 

requirements, and the solution will be found by finding the minimum FPR value. 

However, if the maximum FNR value is not specified, the solution can be selected 

based on the best F1 score from various FNR values. The steps to perform the 

adaptive threshold approach is listed as follows: 

1. Set initial threshold values with 0 to 1 in increments of 0.0001. 

2. Compare validation’s data defect probabilities with each threshold value.  

3. Calculate F1 scores for each threshold value. 

4. Select threshold that returns the specified FNR value or highest F1 score. 

5. Apply threshold to the testing data. 

 

4. Experiment Results and Discussion 

Two experiments for two different datasets were conducted to demonstrate 

the lightweightness and defect detection performance of FN-Net by comparing it 

with VGG16, DenseNet, MobileNetV2, and EfficientNet. These four baseline 

architectures were implemented using Keras modules in Python 3.7.7 and 

TensorFlow 2.3.1. We also demonstrated the ability of the adaptive threshold-

based class determination to tune the proposed model’s performance on the basis 

of different thresholds. 

In each experiment, the datasets were split into 90% and 10% for training and 

testing, respectively. It ensures the training data not to be included in the testing 

phase. Additionally, the validation sets were split from the training set and 

consisted of as much as 10% of the training data. Hyperparameters were selected 

on the basis of the validation data, and the presented results were obtained from 

the testing data. Each experiment was conducted 5 times and the average results 

were considered. 
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This section is divided into two parts. Section 4.1 presents runtime and 

resource consumption results of FN-Net and the baseline CNN architectures. 

Section 4.2 presents the results of adaptive data processing and the thresholds 

selection according to the F1 scores. 

To compare the five considered architectures, their F1 scores, along with the 

corresponding accuracies and FNR were determined as shown in (1 to 3). By 

applying multiple threshold values to the prediction results of validation data, 

various FNR values were obtained for the calculation of the F1 score. The highest 

F1 scores were then selected, and the corresponding thresholds were applied to 

the testing data to obtain the prediction results. 

 𝐹1 =
𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
  (1) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

 𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (3) 

4.1. Lightweightness Evaluation 

The computational cost experiment was conducted to prove that FN-Net can 

perform efficiently with a low computation cost, short execution time, and small 

model size. We recorded the Graphics Processing Unit (GPU) utilization, memory, 

and runtime in both the training and testing phases with Datasets 1 and 2 by using 

the wandb.ai module [28]. The computing host consisted of an Intel® Core™ i7-

900 CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 64 GB of RAM. The operating 

system of this host was 64-bit Microsoft Windows 10 Enterprise. 

TABLE 6 presents the model sizes of the architectures. It shows that FN-Net is 

only 25% the size of MobileNetV2, which was the smallest baseline models. As 
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Table 6: Model Sizes of the Compared Architectures 

Architecture Model size (MB) 

VGG16 500 

MobileNetV2 28 

EfficientNet 48 

DenseNet 84 

FN-Net 7 

for the computational cost, TABLE 7 indicates that DenseNet had the longest 

training time, while MobileNetV2 had the shortest training time among the 

baselines. The runtime of FN-Net was 73% and 6% of MobileNetV2 for Datasets 1 

and 2, respectively. In the testing phase, FN-Net consistently had the shortest 

runtime, with an average of 0.17 minutes for both datasets. This runtime was 37% 

the average runtime of the baseline models. 

The highest GPU utilization of the training and testing phase was obtained by 

VGG16 with average values of 94% and 90%, respectively; while the lowest GPU 

utilization of baseline architecture was obtained by DenseNet with 76.01% for 

training and MobileNetV2 with average value of 78.5%. Compared with the 

DenseNet, FN-Net had less 4% GPU utilization. As for the memory utilization, FN-

Net had 78% of EfficientNet as the lowest among the baselines. The results 

confirmed that the proposed FN-Net was considerably smaller, faster, and 

required less computing power than the baseline models. 

4.2. Evaluation of Class Determination with Adaptive Threshold 

An experiment was conducted to demonstrate the suitability of adaptive 

threshold-based class determination. It allows the selection of certain FNR values 

and the determination of the corresponding threshold and mean F1 score for 

evaluating the selected solution. To illustrate the multiple solutions obtained by 

compared networks, Fig. 5 displays the F1 scores for different FNR values when 

using validation data from Datasets 1. The highest F1 score for Dataset 1 (0.78) 

was obtained when the FNR was 0.18 and FPR was 0.00. 
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Table 7: Runtime, GPU Utilization, and Memory Utilization of the Compared Architectures 

 Dataset 1 Dataset 2 

 Training Testing Training Testing 

 Runtime GPU Memory 

(min.) (%) (MB) 

Runtime GPU Memory 

(min.) (%) (MB) 

Runtime GPU Memory 

(min.) (%) (MB) 

Runtime GPU Memory 

(min.) (%) (MB) 

VGG16  30.2 94 59.1  1.18 90 74.42  3.9 94 35.93  0.22 90 42.96 

MobileNetV2  13.4 93 57.61  0.74 79 60.16  1.97 93 39.3  0.21 78 40.35 

EfficientNet  29.4 89 50.96  1.07 81 59.65  4.6 89 42.45  0.31 82 41.51 

DenseNet  43.6 87 57.68  1.28 75 58.71  4.06 87 36.5  0.36 86 40.81 

FN-Net  9.8 83 43.56  0.26 52 40.63  0.11 83 29.48  0.08 42 36.53 

 

The preferred solutions in this paper are presented by selecting the best F1 scores 

points (marked with x) within the graphs displayed in Fig. 5. Nevertheless, any 

points in the graph are feasible solutions that can be selected according to the 

company’s requirements as described in Section 3.2.  

 

Figure 5: Validation results of FN-Net for Dataset 1 at various FNR values. The best F1 scores (red 

crosses) are the commonly used points in threshold selection. However, any points in the graph are 

feasible solutions. 
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Table 8: Highest F1 scores Obtained for Various Architectures 

 Dataset 1 Dataset 2 

 Highest F1 score Argmax Highest F1 score Argmax 

  F1 Corr. 

scores ACC 

Corr. 

FNR 

 F1 Corr. 

scores ACC 

Corr. 

FNR 

 F1 Corr. 

scores ACC 

Corr. 

FNR 

 F1 Corr. 

scores ACC 

Corr. 

FNR 

VGG16 0.62 0.99 0.40 0.60 0.99 0.40 0.99 0.99 0 0.99 0.99 0 

MobileNetV2 0.05 0.04 0.01 0.00 0.99 1 0.98 0.95 0 0.97 0.96 0 

EfficientNet 0.04 0.40 0.38 0.00 0.99 1 0.97 0.95 0 0.97 0.96 0 

DenseNet 0.33 0.99 0.68 0.62 0.99 0.44 0.98 0.97 0 0.97 0.96 0.03 

FN-Net 0.72 0.99 0.36 0.60 0.99 0.33 0.99 0.99 0 0.99 0.99 0 

 

To demonstrate the effectiveness of the adaptive threshold-based class de 

termination, the approach was applied to all five architectures, and the results are 

presented in Table 8. Among the baseline models, the best F1 scores of Dataset 1 

was obtained by VGG16 with 0.62, while the worse was EfficientNet with 0.04. 

Even though the corresponding accuracies of the VGG16, DenseNet, and FN-Net 

reached 0.99, with lower FNR of 0.36, FN-Net achieved better F1 score by 0.1 

compared to VGG16. When the adaptive approach was not applied, the accuracies 

of all the models reaches optimum value by 0.99. However, MobileNetV2 and 

EfficientNet return FNR value of 1, which implies that the whole defect samples 

were mispredicted as normal. As for the Dataset 2, both VGG16 and FN-Net had 

0.99 F1 scores with corresponding accuracies of 0.99 and corresponding FNR of 

0. The results confirmed that the proposed FN-Net was able to obtain better 

classification results while maintaining less computing resources than the 

baseline models. 
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5. Conclusions 

This paper presents FN-Net, a lightweight CNN-based architecture for fabric 

defect detection. This architecture is currently the best solution for overcoming 

the hardware limitations of on-site industrial computers in fabric manufacturing. 

Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet, the proposed 

architecture enables image-based defect detection to be performed with a 

considerably lower computational cost and significantly higher speed. Moreover, 

the results of the proposed method are better compared to the aforementioned 

state-of-the-art lightweight architectures. We demonstrated that the adaptive-

threshold-based class determination can dynamically adjust the prediction 

results of existing trained models without the need for retraining. 
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